Hardware Bugs & Warnings

Page 1

W

W

The following sections describe known bugs in the operation of the Jaguar hardware. Side-effects of
these bugs should not be relied on, as they may be fixed in future versions of the hardware.

1) The scoreboard mechanism does not work on
the data of any indexed store instruction. This
means that any indexed store instruction that stores
data from a long latency operation (such as a di-
vide or external load) should place an 'or’ instruc-
tion prior to the store. For example:

div
store

r0,r3
r3,(rl4+6)

should be written as:

div ro0,r3
or r3,r3
store r3,(rld+6)

2) In any instruction where the destination register
is written to without being read, the destination
register will not be protected by the scoreboarding
mechanism of the GPU/DSP. This includes MTOI,
NORMI, RESMAC, all MOVE variations, and all
LOAD variations.

If one of these 'destination write-only' instructions
writes to the same destination register as a prior
instruction and there have been no intervening
reads from that register, it 1s possible for the
second instruction to complete before (or
simultaneously with) the first, causing the register
to become corrupt. This bug only becomes a
problem when doing 'dummy' instructions as
shown in the following example:

div r2,r4 ; Divide starts
; (takes 18 ticks)
moveqg #4,r4 ; Move completes

. before divide

Although this code doesn't make much sense, it
might appear at the end of a loop as shown below:

loop:
jr EQ, loop
div r2,ré

...

IIIIIIIIIIIIIIIIIl'I’Illlllllllllllllllll

Any number of instructions could

; appear here. Unless one of them reads
: R4, the result of the MOVEQ will be

; unreliable.

...

moveq $#4,r4

In this case, when the loop condition fails, the
DIV/MOVEQ instruction sequence will occur and
register R4 will be corrupted. This can be
prevented by causing the destination register to be
read prior to the move as is shown in the following
example:

loop:
jr EQ, loop
div r2,ré
or r4,r4
moveq #4,r4

Please note that these examples illustrate one par-
ticular sequence (DIV/MOVEQ). Any instruction
which writes to a register followed later in the
instruction stream by a 'destination write-only'
instruction with no intervening reads of that
register is unreliable.

In practice, this creates two cases. If aDIVor
LOAD instruction is used to write to a register, a
read of that register must be inserted prior to any

© 1994 Atari Corp.

Confidential Information “7R Property of Atari Corporation

26 April, 1995

Page 2

Hardware Bugs & Warnings

'destination write-only' instruction that writes to
the same register.

In addition, any instruction which writes its result
into a register and is immediately followed by a
'destination write-only' instruction which writes to
the same register will also corrupt the register.
This effect is shown in the example below:

loop:

jr EQ, loop

add rl0,rl2

moveq 41,r12 ; ADD will trash this

You should also note that a 'dummy' instruction
sequence, as shown above, is rare. In normal
program code where the result of a icgister write 15
used, the bug does not occur. This is illustrated in
the following example:

load (r2),r4
add r4,ré6
moveqg #4,r4 safe because R4 was

H
; read above

3) Neither the DSP or the GPU will reliably
execute jr' or jump' instructions unless they are
in internal RAM.

4) The DSP may not be used in high priority. The
DMAEN bit of D_FLAGS should always be 0.
Otherwise, doing an external load or store will
cause the DSP to hang, needing a reset to recover.

5) The GPU and blitter may not be used in high
bus priority while the object processor is running.
The DMAEN bit of G_FLAGS should be 0, and
the BUSHI bit of B_CMD should be 0.

No bus master may operate at a higher priority
than the object processor. If something else gets
the bus between the second and third phrases of an
object header, then the line buffer address can be
corrupted, causing horizontal black stripes and
possibly other artifacts in the display.

6) The DSP and the GPU must not be stopped by
an external processor writing directly to the
D_CTRL or G_CTRL registers. Only the GPU
should turn off the GPU, and only the DSP should
turn off the DSP.

If one processor wants to shut down another one,
the best way is to ask them to do it to themselves.
For example, place a special code into a
semaphore and then cause an interrupt for the
processor you want to shut down. The interrupt
handler would see the semaphore and shut down
the processor itself.

7) The DSP must not do an external write unless it
is preceded by an external read that will complete
for the write starts. This problem is intermittent
and could be missed by testing. Be careful in any
DSP code that writes to external memory.

Example #1:
load (rl),r2
or rio,rll
store rll,(xr3)
Example #2:
load (rl),r2
or r2,rll
store ril,(r3)
Example #3:
load (rl),r2
or r2,r2
or rio,rll
store ril, (r3)

Example #1 will not work correctly but example
#2 will. This is because the result of the load is re-
quired for the or operation to be performed. To
make example #1 work change it to example #3.

8) The value in the High Data Register in the GPU
is changed after ANY external load, not just
loadp. This means that if an interrupt in running in
the GPU that loads from external memory the
underlying program may not use loadp.

26 April, 1995

Confidential Information “7PR Property of Atari Corporation

© 1994 Atari Corp.

Hardware Bugs & Warnings

Page 3

i 'W% There is a bug in the divider of the GPU and changed in the following two instructions because

DSP. If you try to do two consecutive divides of pipe-lining effects. If you are going to use the
without there being at least 1 clock cycle of idle flags set by a STORE instruction, or are changing
time between them, then the result of the second one of the other bits such as the register bank, then
divide will be wrong. ensure that there are two NOP instructions after

the STORE to either of these registers.

This will only occur when the two divides are
separated by less than 16 clock cycles, and the
second divide as the quotient of the first divide as
one of its register operands, and there is no score-
board dependency on the quotient of the first one
prior to the second.

The work-around should be to either make sure
that more than 16 clock cycles occur between
divide instructions, or make sure that an
instruction which is dependent on the quotient of
the first divide occurs before the second divide.

Example #1:
div ro,rl
moveq $3,r5
div r5,rl
should be like this:
div r0,rl
moveq £#3,r5
or rl,rl
div r5,rl
Example #2:
div r0,rl
moveq $#3,r5
div r5,rl
should be like this:
div r0,rl
noved $3,r5
or rl,rl
div r5,rl

10) DSP matrix multiplies only work in the lower
4K of DSP RAM. The DSP matrix register can
only point to memory locations in the first 4K of
DSP RAM. Only address lines 2-11 are program-
mable; the rest of the matrix address is hard-wired
to $F1Bxxx.

11) When you write a value to the G_FLAGS or
D_FLAGS registers, it may not appear to have

© 1994 Atari Corp. Confidential Information “7PR Property of Atari Corporation

26 April, 1995

i
i
|

. Page 4

Hardware Bugs & Warnings

1) The Y add control bits in the Al and A2
address generators in the blitter are not
differentiated between properly. The A2 Y add
control bit is ignored. The A1Y add control bit
affects both address generators. However, ifthe Y
sign bits are set in either address, the
corresponding add control bit has to be set for the
number to be negative.

Either do not use this function, or use it on both
address generators.

2) SRCSHADE only works if the GOURZ bit is
set. No actual Z-buffer data needs to be calculated
or written, but GOURZ must be set.

3)If Al CLIPxisnotona phrase boundary, then
clipping occurs on the right side even if the
Al_CLIP bit is not set. This applies to the
destination even if the DSTAZ2 bit of the B_CMD
register is set.

To avoid this problem, set Al_CLIP to 0 if not
clipping, and when using DSTAZ2 make sure the
source is an even phrase width.

4) Unaligned blits in 2 bit per pixel mode are not
reliable. Use 1 bit per pixel blits instead.

5) If Z-buffer operation is enabled and the
ADDDSEL or SRCSHADE bits are set, then the
data is sometimes corrupted.

To work around this, break the operation into two
blits, one to do the SRCSHADE or ADDDSEL
into an offscreen buffer, and then a second one to
perform the Z-buffer operation onto the screen.

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1994 Atari Corp.

2 W (#111.11111) may be used with the HSCALE

Hardware Bugs & Warnings Page 5

1) Itis possible for the last column of pixels of a
RMW (Read-Modify-Write) object 10 be corrupted
if it is followed by another bitmap object. This
will happen on the right side unless the REFLECT
bit is set, in which case it will happen on the left
side.

To work around this problem, you can ensure that
the last pixels of the source data are all transparent
(i.e. pad the object data). Or you can make sure
that the next object in the object list will not
appear on the same scanlines as the RMW object.
Or you can place an always-false branch object
after the RMW object.

2) Setting the VSCALE field of 2 scaled bitmap
object to a value greater than 7.0 (%111.00000)
will fail. As documented, values as high as 7.1F

field.
3) Setting the HSCALE field of a 24-bit scaled

bitmap object to any value other than 1.0 will
cause the object to be distorted.

© 1994 Atari Corp. Confidential Information “ZPR Property of Atari Corporation 26 April, 1995

Page 6 Hardware Bugs & Warnings

1) There is a bug in the Jaguar UART. If a start registers, and to use the blitter when you want

bit is detected at a certain phase in the UART’s to copy information into GPU or DSP RAM.

divide by 16 timer, it will be shifted in twice,

resulting in a left shift of the data byte. If you are using a high-level language compiler,
make sure that it does not generate clr.l

The problem may be avoided by preceeding a instructions for code that accesses this address

data packet with a dummy byte where the MSB space.

is set (e.g. $80). The receiver code should
discard this dummy byte. Subsequent bytes J
should be exactly aligned (i.e. 2, 3, or 4 stop
bits exactly, before the next start bit). This will ‘
result in causing the falling edge of the next
start bit to miss the phase ofthe UART counter
which caues the problem.

If a gap is left after a byte which is more than 2
bit times long, or is not exactly aligned with the
previous byte, then the dummy byte must be re-
transmitted (to align the UART counter again).

2) The clr.l <ea> and move.l <ea>,-(an)
instructions of the 68000 do not work correctly
% when writing to Jaguar GPU & DSP hardware
registers and internal RAM.

The address ranges with this restriction are
$F02000 to $FO7FFF and $F1A000 to

} $F1F000. These instructions may be safely

L used on memory addresses outside these ranges.

i Because the 68000 has a 16-bit data bus, 32-bit
writes to memory actually occur as two scparate
. 16-bit writes which happen in succession. With
certain instructions such as those shown above,
- the order in which the high word and low word
are written is reversed, which causes problems
when writing to these address ranges.

e

While these are the only ones we know about ai
present, it is possible.there are other
instruction/address mode combinations that
have this problem. The best way around it is to
use the GPU and/or DSP instead of the 63000
when you want to write to Jaguar GPU/DSP

26 April, 1995 Confidential Information “7TR Property of Atari Corporation © 1994 Atari Corp.

	Hardware Bugs & Warnings
	GPU/DSP Bugs & Warnings
	Blitter Bugs & Warnings
	Object Processor Bugs & Warnings
	Miscellaneous Hardware Bugs & Warnings

