DB:
THE ATARI
DEBUGGER

Manual Date 93/11/15

Table of Contents

Chapter 1: DB: THE ATARI DEBUGGER 1-1
USAGE 1-1
OPTIONS 1-1
-g 1-1
-bN , 1-2
-S 1-2
-m 1-2
B -ifile 1-3
2 TERMS 1-3
1 USING THE DEBUGGER 1-4
Chapter 2: EXPRESSIONS, RANGES, AND STRINGS 2-1
EXPRESSIONS 2-1
SIMPLE EXPRESSIONS 2-1
hex constant 2-1
» @decimal constant 2-1
» %binary constant 2-1
. .symbol 2-2
= “variable 2-2
&variable 2-2
$ 2-3
COMPLEX EXPRESSIONS 2-3
RANGES 2-6
STRINGS 2-7
Chapter 3: THE CLIENT, BREAKPOINTS, AND CHECKPOINTS:
AN OVERVIEW 3-1
RUNNING THE CLIENT PROGRAM 3-1
BREAKPOINTS 3-1
MEMORY CHECKPOINTS 3-2
Chapter 4: COMMANDS 4-1
BREAKPOINTS AND CHECKPOINTS ‘ 4-2
b ’ 4-2
nb [address #index }] 4-3
m 4-3
nm [{ address #index }] 4-6
TRACE AND GO 4-6
t[{count x w}] 4-7
u[{count x }] 4.7

vi{u w}][count] 4-7

g [range]
MEMORY
1 [range]
d{{w 1}][range]
S
f[{w 1}]rangevalue
f range string
THE CLIENT AND SYMBOLS
exec [{ program [args...] on off}]
args fargs...]
getsym program [textbase]
sym name value
nosym
? [symbo]]
where [expression]
stack
REGISTERS AND VARIABLES
set [variable [value]]
X [variable [value]]
vars
stubstate
REMOTE DEBUGGING COMMANDS
wait
check
terminate
continue
PROCEDURES AND ALIASES
procedure [name [args...]]
plist [name. ..}
global [name. ..]
local [name. . .)
goto label
alias [name [expansion]]
unalias name
noalias
FILES AND SCRIPTS
read [file [address]]
write file [range]
load file
unload
reload

4-8
4-9

4-9

4-10
4-11
4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-15
4-16
4-17
4-18
4-18
4-18
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-20
4-21
4-21
4-21
4-22
4-23
4-23
4-23
4-23
4-24
4-24
4-25
4-25

g [range]
MEMORY
1 [range]
d[{w 1}][range]
S
f[{w 1}]range value
f range string
THE CLIENT AND SYMBOLS
exec [{ program [args...] on off }]
args [args...]
getsym program [textbase]
sym name value
nosym
? [symbol]
where [expression]
stack
REGISTERS AND VARIABLES
set [variable [value]]
X [variable [value]]
vars
stubstate
REMOTE DEBUGGING COMMANDS
wait
check
terminate
continue
PROCEDURES AND ALIASES
procedure [name [args. ..]]
plist [name. ..]
global [name. ..]
local [name...]
goto label
alias [name [expansion }]
unalias name
noalias
FILES AND SCRIPTS
read [file [address]]
write file [range }]
load file
unload
reload

4-16

4-8

4-9
4-10
4-11
4-12
4-12
4-13
413
4-14
4-14
4-15
4-15
4-15

4-17
4-18
4-18
4-18
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-20
4-21
4-21
4-21
4-22
4-23
4-23
4-23
4-23
4-24
4-24
4-25
4-25

ALIAS ,
AUTO-EXECUTE ALIASES
COMPOUND COMMANDS, introduced
DEFER
COMPOUND COMMANDS, explained
Chapter 8: OPERATING SYSTEM CONSIDERATIONS
DB AND GEMDOS
DB AND MARK WILLIAMS C
DB AND THE XBIOS TRAP
THE SHELL COMMAND IN DETAIL
EXCEPTIONS
DB, TOS, AND 68030
DEBUGGER MEMORY USAGE
Chapter 9: REMOTE DEBUGGING

7-5

" 7-6

7-7

7-8

8-1
8-1
8-3
8-3
8-4
8-4

9-1

Chapter 1
DB: THE ATARI DEBUGGER

Db is a debugger for the Atari ST and TT series of 68000-family computers. Itis nota
source-level debugger, but it does handle Alcyon C, Mark Williams C, GCC and HiSoft
Lattice (new and old) symbol table formats.

Db can use any of the ST's character devices for its input and output, including the screen,
the serial port, and the MIDI port. The 1/0 device is selected with a switch on the
command line (or in the TTP window if started from the desktop).

Db is capable of debugging programs running on one machine while the bulk of the
debugger runs on another. This is called remote debugging, and permits debugging of
operating systems while they boot, for example. This feature is described in the chapter

REMOTE DEBUGGING.
USAGE
From a command shell, db can be started as follows:
db [options] [program [args...]]

If started as a TTP program from the desktop, the arguments line looks the same
without the word db at the beginning.

OPTIONS

Db can use many different devices for its input and output. This makes debugging
graphics- and keyboard-oriented programs easier.

These options on the command line select the output device to use:
g
Use GEMDOS to access the ST screen and keyboard. This is the default

case, but it does have limitations. See the section DB AND GEMDOS in

the chapter OPERATING SYSTEM CONSIDERATIONS for more
information.

1-1

-bN

Use the BIOS to access the ST screen and keyboard. Sometimes this helps
when debugging a program which itself does BIOS 1/0, because using
GEMDOS calls can mess up type-ahead and the like.

You can (optionally) specify which BIOS device to use by placing the BIOS
device number after the -b: "-b3" means "use BIOS calls for input and
output, and use BIOS device number 3 (the MIDI port). The argument is
in decimal. Any number at all may be used here, including numbers which
are not in fact BIOS device numbers; in this case, the debugger will
probably crash, and it is likely that you will have to reset your machine.

Use the serial (RS232) port. A terminal or an ST running a terminal
program must be connected via a "null modem" cable, and its keyboard
and screen are used for communicating with the debugger. (You can even
use a2 modem connection to a terminal or computer, but this is extreme.)
The baud rate, parity, etc. for the serial port must be set before starting the
debugger in this mode.

Use the MIDI port. An ST running a terminal program which uses the
MIDI port must be connected with a double-MIDI cable (i.e. MIDI OUT->
MIDI IN and MIDI IN -> MIDI OUT).

In the last two modes, the debugger controls the serial or midi port hardware directly,
without going through GEMDOS or the BIOS, so there are fewer limitations on debugging
programs which use GEMDOS or the BIOS. However, the limitations with respect to the
operating system always apply, except when remote debugging. See the section DB AND
GEMDOS in the chapter OPERATING SYSTEM CONSIDERATIONS for more
information. Also, see iodev and bdev in the section on debugger variables.

Each of the options -g, -b, -s, and -m can be followed by the letter x: this controls the
printing of non-standard characters when using the d (dump) command. Non-standard
characters are those with ASCII codes 128 and up. Normally, these are printed in the
ASCII part of the dump command’s output. When -s, -m, or -b with a device-number
code is used, printing of these characters is suppressed, because they confuse most
terminals. The presence of the letter x (e.g. -sx or -bxl) re-enables printing of these
characters, which can be useful if your terminal is in fact another Atari computer with the
same extended character set. The x modifier also controls the use of inverse video for

error messages: if the Atari ST extended character set is used, the VI52 code for inverse
video will be used too.

In addition, the following option controls loading of the initialization script:

-ifile
The debugger normally searches for and executes a startup file when it is run. The
-i option disables this. With the optional file argument, the normal startup file is
not loaded, and file is loaded in its place. There must not be a space between the
-i option and the file argument: "-imyfile". See the section USING THE
DEBUGGER in this chapter for more information.
Usage examples:
db start the debugger; use GEMDOS for 1/0.
db -s myprog.prg -z use the serial port for 1/0; load myprog.prg
for execution, with the command-line
argument -z.
TERMS

Several terms are used throughout this document which must be defined here.
The client is the program you are debugging.

The head is the part of the debugger which handles all user input and output. The
commands you type are translated by the head into commands for the stub. Itis
the stub which causes the client to run, processes breakpoints, and catches
exceptions like bus error. The stub reports these events to the head, which reports
them to you.

When you are remote debugging, the head runs on the master machine, and the
stub and client run on the slave machine. The head gives commands to the stub
and receives the stub’s responses through the communications layer, which actually
talks over an interface cable.

The term debugger is used to refer to the head, stub, and communications; in
short, everything but the client (program) and the user (human).

You cause the client to execute instructions with the g (go), t (trace), u (untrace),
and v (verbose-trace) commands, collectively known as trace/go commands. A
stop is anything which causes a trace/ go to stop: a bus error, address error, or
other processor exception, a breakpoint whose count has reached zero, or a
memory checkpoint which becomes true. Memory checkpoints are evaluated at
times called opportunities, which occur when processing exceptions, including the
illegal-instruction exception caused by breakpoints and the trace exception which
happens between instructions of a trace.

You can put a list of commands to be executed in a file, and cause those
commands to be executed by the debugger using the load command. Such files
are called scripts. Also, procedures consisting of debugger commands, arguments,
and local variables are available.

USING THE DEBUGGER

When the debugger is started, it processes its GEMDOS command line first. If
there are any options (like -m or -s) they are checked and dealt with. Then, if
there is a program argument, that program is loaded and set up for executing. It
becomes the client. If there are any args they are placed in the client’s basepage,
as GEMDOS command-line arguments to it. When the client is completely set up
and ready to run, the debugger prints out its basepage information (text size,
environment pointer, etc.) This client set-up amounts to the same thing as using
the exec command.

The debugger then looks for and loads your configuration file (that is, it executes
the commands found there; such files are called scripts). The first place it looks is
the current directory, for a file called db.re. If that file doesn’t exist, it looks for
the file named in the environment variable DBRC. If there is no such environment
| variable, it looks for the file db.rc in the directory named by the environment

' variable HOME. If none of these files exists, the debugger simply continues with
the start-up procedure.

When remote debugging, the autoload procedure is the same, except that the
debugger looks for rdb.re, then the file named in the environment variable
RDBRC, followed by rdb.re in the HOME directory. 3

In either case, the -i option on the debugger’s command line inhibits the loading of
astartup file. If the -i option has a file argument, that file is loaded instead. The
debugger searches for the file in the current directory first, then in the HOME
directory.

Whether or not there was a program argument to execute and/or a startup file, the
debugger ultimately displays its prompt, a colon (":"). Any time you see the colon
prompt, the debugger is waiting for you to type a command line. Command lines
consist of commands and their arguments. Multiple commands on one command
line are separated by semicolons (*;"). Multiple-letter commands must be
separated from their arguments by a space (e.g. "where 12322"), while
single-letter commands don’t need a space (e.g. "d12322" or "d 12322").

You can always use ™ S (control-S) to stop the debugger’s output and ~ Q to start
it again. You can usually use ™ C to abort a command, especially commands
which generate long listings.

All numbers printed by the debugger are in hex. All numbers you type are
assumed to be hex, unless prefixed with @ (decimal) or % (binary).

When debugging programs compiled under Mark Williams C, you need to play a
trick before you start the program. See the section DB AND MARK WILLIAMS
C in the chapter OPERATING SYSTEM CONSIDERATIONS for more
information.

When remote debugging, the debugger will display its version number, then
wait for the stub to respond before loading the configuration script.

1-5

Chapter 2
EXPRESSIONS, RANGES, AND STRINGS

This chapter describes how values are entered into the debugger, mostly as arguments to
commands. An expression is something which boils down to a single numeric value. A ‘
range is something which boils down to a starting address and a length: a range of Ji
addresses. A string is something which boils down to a series of single-byte values. A
section on each follows.

EXPRESSIONS

An expression can be used any time a numeric value (like an address or count) is
expected. All expressions evaluate to 32-bit integers. Overflow is checked when
reading a constant (so the hex constant $FFFFFFFFO would cause an error because
it requires 36 bits). Overflow is not checked in any other situation. There are two
kinds of expressions: simple expressions and complex expressions. A

SIMPLE EXPRESSIONS i
A

Simple expressions contain no operators and are not enclosed in]
parentheses. There may not be any spaces in a simple expression. Simple]
expressions take one of the following forms:

hex constant
$hex constant

A hex constant has the obvious value. The leading’ $’ is optional:

with no prefix, a number is assumed to be hexadecimal. Hex

constants consist of an optional sign (+ or -) followed by one or i
|
|

more of the digits 0-9, A-F, and a-f.
Examples: O, 1, 3FA, 13aD4, $£fffa4d0, $-5b30 (same as $ffffa4d0). i
@decimal constant

A decimal constant begins with an at-sign ("@"), then an optional
sign (+ or -), then one or more digits 0-9. It has the obvious value. I

Examples: @0, @99, @-32768 (same as $££f£8000).
%binary constant

A binary constant begins with a percent-sign ("%"), then an

2-1

optional sign (+ or -), then one or more digits 0-1. It has the
obvious value.

Examples: %0, %1010, %1000000000000000 (same as
$00008000).

.symbol

A leading period (.") indicates that what follows is a symbo]
specification. The value of the expression is the 32-bit value in the
symbol’s value field. A symbol specification can simply be the
name of the symbo] (e.g. "start") or something more complex. See

the chapter SYMBOLS AND DEBUGGER VARIABLES for more
information.

Examples: .main, -gemlib:xmain: _main:1.3

“variable

A leading backquote (' *

) indicates that what follows is a debugger
variable name. The value of this expression is the value in the

corresponding debugger variable. See the chapter SYMBOLS
AND DEBUGGER VARIABLES for more information.

Examples: “do, “clientbp, “mtype

&variable

A leading ampersand (" & °) indicates that what follows is a
debugger variable name, and the value of this expression is the
address of the storage for the indicated variable in the stub’s
memory. These variables should not be changed, since the
debugger’s local copy of the variable might overwrite your change.

However, these addresses can be used in memory checks to set
checkpoints on the values in registers.

See the section DEBUGGER VARIABLES in the chapter
SYMBOLS AND DEBUGGER VARIABLES (especially the
subsection Client Registers), and the section MEMORY
CHECKPOINTS ON VALUES IN REGISTERS in the chapter

THE CLIENT, BREAKPOINTS AND CHECKPOINTS: DETAIL
for more information.

“ v

Examples: &d1, &pc, &sr

The dollar-sign alone is short for *$. This temporary variable is set
to the result of the last math command (that is, just an expression
on the command line). In addition, the f (find) command sets $ to
the address of the start of the first match.

Example: $
COMPLEX EXPRESSIONS

The operators you can use in complex expressions are all as in C:

+-%/% " & | (arithmetic and bitwise operators)
==l=><>= <= && || (relational operators)

P+ -~ (prefix unary operators)

>> << (bit-shift operators)

?: (the conditional operator)
=+4=-=%=/=%= "= (assignment operators)

&= |=>>= <<= (more assignment operators)

) (parentheses for grouping)

In addition, some "function calls” are available: peek(exp) returns the value of the
byte at address 'exp’ in the client. wpeek(exp) returns the word, and Ipeek(exp)
returns the long. speek(exp) and swpeek(exp) return the byte and word
sign-extended into a long.

Parentheses can be used for grouping. Also, since spaces separate arguments in
commands, you need to use parentheses to set off an expression containing spaces
as a single argument:

I .func + 10

is the "list" command with three arguments: the value of .func, the nonsensical
argument '+, and the number $10. The following two lines both do what you
expect: list starting at offset $10 in .func:

l.func+10
] (.func + 10)

Names of machine registers, stub variables, global variables and local variables

2-3

(when in scope) can all be used and assigned to in expressions. To use program
symbols, use a dot as a prefix: ".start" means "the value of the program symbol
'start™ (NOT the value found at that address).

In an expression, a word like "feed" might be interpreted as either a variable name
or a hex number. Words are scanned for meaning in that order. Prefix with a zero
(0)ora dollar-sign ('$’) to force Interpretation as a hex number ("Ofeed" or
"$feed"), or a backquote (*")to force interpretation as a variable (" feed"). In
addition, ™ ~d0 is the address of dO0.lin the stub’s memory.

Unlike C, the && and [l and ?: operators always evaluate all their operands. An
example use of the conditional operator: "var = (expl ? exp2 : exp3)" means "If
expl is true, set var to exp2, else set var to exp3."

To just "do math" at the debugger command prompt you can give a command like
"3+3" to print the answer. If the first part of the expression looks like a command,
put parens around it: as a command, "d0" means "dump starting at zero" but "(d0)"
means "print the value of the register d0." The special symbol "$" represents the
value of the last of these expression-commands (or the address of the first match
from an "f" (find) command). These expression-commands normally print the
result in hex, decimal, octal, and binary, but if there are any assignment operators
then the answer isn’t printed. Thus, "(var += 6)"is a legal command which
increments var by 6, assigns the answer to $, but does not print the answer. This
is the most logical way to assign and change values of variables in scripts; the "set"

and "x" commands can also be used, but they are now obsolete.

Caveat: an assignment like "(t0 = 3 x)" will in fact assign 3 to the variable t0
before jumping out with a parse error.

FORMAT

MATH

(expl + exp2)
(expl - exp2)

(expl * exp2)

(expl / exp2)

(expl \ exp2)

BITWISE

(expl & exp2)
(expl | exp2)
(expl ™ exp2)

(expl ~ exp2)
(expl >> exp2)

(expl << exp2)

LOGICAL
(expl = exp2)

(expl && exp2)
(expl || exp2)
(expl ™ ™ exp2)

(! exp)

(expl > exp2)
(expl > exp2)
(expl s> exp2)
(expl s> exp2)

MEMORY
(1peek exp)
(wpeek exp)
{peek exp)

COMMENTS

Add the expressions together
Subtract exp2 from expl

Multiply the expressions together
Divide expl by exp2

Return expl modulo exp2

Bitwise AND the expressions together
Bitwise OR the expressions together
Bitwise EXCLUSIVE OR the
expressions

Bitwise NOT (invert) the expression
expl >> exp2 (that is, expl shifted
right

by exp2 bits (zero fill))

expl << exp2 (that is, expl shifted
left by

exp2 bits)

TRUE if the expressions are equal
(also ==)

Logical AND of the two expressions
Logical OR of the two expressions
Logical EXCLUSIVE OR of the two
expressions

Logical NOT of the expression
TRUE if expl > exp2 (unsigned)
TRUE if expl < exp2 (unsigned)
TRUE if expl > exp2 (signed)
TRUE if expl < exp2 (signed)

Returns the longword at address exp
Returns the word at address exp
Returns the byte at address exp

Here are some examples of complex expressions and how they evaluate:

EXPRESSION VALUE COMMENTS

2+3+3 7 8 simple addition

7-5 2 simple subtraction

2+1) *3 9 nested complex expressions

“clientbp + 100 gives the client’s text base

(1peek (4 + *dO + *a0)) the addressing mode 4 (d0,a0.1)
RANGES

A range is a way to specify a block of memory. A range consists of a start
address and either an end address or a count. For most commands which
take a range, the start and count values have defaults, so not all parts of
the range need to be typed in.

A fully-specified range can look like "start, end" or "start[count]" (where
start, end, and count are expressions, and the brackets and commas must
be typed as shown). If the end address is present, it is the first address not

included in the range: 100,200 specifies the range of addresses from 100
to 1FF, inclusive.

Various parts of the full specification can be omitted. A range which uses
the default start address looks like "end " (note the leading comma,
showing that start was omitted) or "[count]" (the brackets set off count and
show that start was omitted). If you want the default count the range just
looks like "start" (which also looks like any other expression).

Here are some examples and the ranges they specify, assuming the default
start is 100 and the default count is 80 (all numbers are hex):

RANGE FIRST LAST COMMENTS

200{70] 200 26F no defaults; start [count] form

200 200 27F default count of 80]
[70] 100 16F default start; [count } form
80,100 80 FF no defaults; start,end form
,200 100 1FF default start; ,end form]

2-6

Sometimes the start and/or count fields have no defaults; in these cases,
they must be specified. Also, the start[count] form is not always allowed.
This is the case for the g (go) command, where a count of bytes to execute
does not make sense.

4 The default start and count values are listed in the descriptions for all
commands which take a range argument.

STRINGS

Strings are used mainly by the f (find) and s (memory set) commands. A
string consists of characters surrounded by double-quotes ("string") or
single-quotes (string). The string acts like the sequence of bytes
represented by the characters between the quotes, with the following

escapes:
ESCAPE MEANING
B = \b backspace ($08)
A \e escape ($1B)
i \f formfeed ($0C)
E \n linefeed ($0A)
1 \r carriage return ($0D)
3 \t tab ($09)
1 \\ the single character backslash ($5C)
\? the special "wildcard" escape (see find)
* \xXX the byte $XX where XX is two hex digits

Quotation marks are also used to set off parts of commands and keep
semicolons from splitting up a command. See the chapter
PROCEDURES, IF, GOTO, DEFER, AND ALIAS for more information.

Chapter 3
THE CLIENT, BREAKPOINTS, AND CHECKPOINTS: AN OVERVIEW

RUNNING THE CLIENT PROGRAM

Once there is a client ready to run (loaded with the exec command or with a
program argument on the debugger's command line), you can cause it to run with
the g (g0), t (trace), u (untrace), and v (verbose-trace) commands. Collectively,
these are called trace/go commands. What follows are cursory descriptions. See
the chapter THE CLIENT, BREAKPOINTS AND CHECKPOINTS: DETAIL for
more information.

The g (go) command runs the client at full speed. It will only stop when
something exceptional happens, like hitting a breakpoint or causing a bus error.
You can also stop it by hitting the stop button, if you have one. See the section
STOP BUTTONS in the chapter REMOTE DEBUGGING for more information.

The t (trace) and u (untrace) commands cause the client to execute just a few
instructions (sometimes just one) and then stop and display the registers. The v
W (verbose trace) command causes the client to execute one instruction, display

. those registers which have changed, then execute the next instruction, and so on.
‘ You can "trace through" a subroutine this way, or even trace through entire
programs. The advantage is that the client doesn’t get out of your control: the stub
gets an opportunity to check memory checkpoints between each instruction, and
you can stop the client after executing a certain number of instructions, even if
those instructions are part of (say) an infinite loop. Naturally, tracing is
significantly slower than full speed, because of all the processing going on in the
stub. For just one or a few instructions, however, the speed doesn’t really matter
much, anyway.

Trace and untrace are almost identical. They differ in their treatment of the "trap”
instruction. See the section TRACE and UNTRACE in the chapter THE
CLIENT, BREAKPOINTS AND CHECKPOINTS: DETAIL for more
information.

BREAKPOINTS

Breakpoints allow you to stop the client program when it is about to execute the
instruction at a specific address. A counted breakpoint allows you to stop the client
the n-th time the instruction is executed.

You set breakpoints with the b command. When you set breakpoints and use the
trace/go commands, the trace/go is stopped if the PC matches any breakpoint

3-1

“ address and the count for that breakpoint (if any) has expired.

See the chapter THE CLIENT, BREAKPOINTS AND CHECKPOINTS:
DETAIL for more information.

MEMORY CHECKPOINTS

T

Memory checkpoints cause a stop based on the contents of memory, rather than
before executing a particular instruction. You set checkpoints with the m
command. When you set checkpoints and do a trace/go, the trace/go is stopped
when any of the checkpoint expressions become TRUE. Note the word "becomes"
-- memory checkpoints are "edge triggered" rather than static.

Checkpoints are of two types: range and comparison. Range checkpoints cause a
stop when a change is detected in a range of memory (e.g. an array of the screen).
Comparison checkpoints cause a stop when the comparison evaluates to TRUE
when previously it was FALSE.

Unlike breakpoints, which cause an exception in the processor, memory
checkpoints need to be evaluated by the stub. The times when the stub gets a
chance to evaluate checkpoints are called opportunities. Briefly, opportunities
occur between instructions of a trace (verbose or normal) or untrace, and during
the processing of a breakpoint (even if that breakpoint, because of its count,
doesn’t cause a stop).

Since memory checkpoints only get evaluated during an opportunity, they can
only cause a stop at those times. Thus, all you know is that the expression became
TRUE sometime between the previous opportunity and this one. In the case of
trace and untrace, the opportunities come between every instruction. But in the
case of a go command, you don't always know just when the previous opportunity
was. Furthermore, the checkpoint might have become TRUE and then FALSE
again since the last opportunity.

Breakpoints cause an opportunity even when their counts have not yet expired.
You can provide an opportunity explicitly by placing a breakpoint with a count of
"never” -- for instance, at the beginning of a loop. Such breakpoints never cause a
stop by themselves, but always cause an opportunity.

See the chapter THE CLIENT, BREAKPOINTS AND CHECKPOINTS:
DETALIL for more information.

3-2

CHAPTER 4
COMMANDS

The debugger prompts the user for a command with a colon (":"). Commands can also
come from text files (see the load command), aliases (see the alias command),
procedures (see the chapter PROCEDURES), and the client (see the indirect
command). In each case, multiple commands can be specified on one line by separating
them with semicolons (;"). If you really mean to use a semicolon (for example, in an
argument to the print or echo commands), the argument containing the semicolon can
be enclosed in quotation marks ("”) or apostrophes (also called "single quotes:" ""). See
chapter PROCEDURES, IF, ALIAS, AND DEFER for more information.

The simplest kind of command is simply an expression. Typing an expression alone causes
that expression to be evaluated, and the result to be printed in hex, decimal, octal, and
binary. The result is also placed in the debugger variable *$ for future use. This kind of
command (which usually just does some math) is called a math command.

In the following list of debugger commands, these syntax rules are used:

Brackets ("[]") surround optional items. Italics are used for the name of something you
type: "d range" means the letter 'd’ followed by a range specification. Three dots ("...")
means the previous item can be repeated one or more times. Several alternatives enclosed
in braces and separated by a vertical bar ("{ a | b}") means either a or b, but not both.
Several items surrounded by both brackets and braces means you can use one of the
things inside the braces, or nothing at all:

transcript [{ off | flush | printer | file[a]}]

means that the following forms are valid:

transcript none of the alternatives
transcript off the off alternative

transcript flush the flush alternative
transcript printer the printer alternative
transcript myfile the file alternative without’a’
transcript myfile a the file alternative with 'a’

Note that sometimes the brackets and braces should really be typed: this is the case for
the brackets in range specifications and the braces in the indirect operand to a memory
checkpoint. The description of the command should make these exceptions clear.

The commands are divided into these groups:

SECTION COMMANDS

Breakpoints and checkpoints b, nb, m, nm

Trace and go tLuv,g

Memory handling Lds,f

The Client and symbols exec, args, getsym, sym, nosym, ?, where,
stack

Registers and variables set, X, vars, stubstate

Remote commands wait, check, terminate, continue

Procedures and Aliases procedure, plist, global, local, goto, alias,
unalias, noalias

Files and aliases read, write, load, unload, reload, bgoto,
fgoto

Miscellaneous commands bind, abort, #, transcript, gag, exit, q, quit,
help, echo, print, if, indirect, !, dir

BREAKPOINTS AND CHECKPOINTS

You use breakpoints to make the client stop at a particular place. You use memory
checkpoints to make the client stop when a particular set of conditions occurs. See

the chapter THE CLIENT, BREAKPOINTS AND CHECKPOINTS: DETAIL for
more information.

#index] [address [{ count | never }]]

The b command alone lists the active breakpoints. With an address, it sets
a breakpoint (with a count of one) at that address, and removes all other
breakpoints there. With a count, it sets a counted breakpoint at the
address. With never, it sets a breakpoint which will never cause a stop.
(This is useful because it creates an opportunity for memory checkpoints.)

With no arguments, b lists all breakpoints. The list appears in a form
suitable for saving (with transeript) and restoring (with load).

If the #index argument is present, the new breakpoint is placed in slot

number index. If there was already breakpoint in that slot, the old one is
removed first. This option is useful when using auto-execute aliases. See

4-2

the section AUTO-EXECUTE ALIASES in the chapter PROCEDURES,
IF, GOTO, DEFER, AND ALIAS for more information.

4 Examples:
b list all breakpoints in the table
b .main set a breakpoint to stop at the label "main”
b .main 1 same as above
b .loop 3 set a breakpoint to stop the third time the
instruction at "loop" is executed
b #4 .loop set a breakpoint at .loop in slot #4, replacing
whatever breakpoint was in that slot, and replacing
any other breakpoint at that address.

nb [{ address | #index}]

The nb command alone removes all breakpoints. It asks for verification
first: space,’y, and Y’ mean "go ahead." Any other key aborts. With
#index, it removes breakpoint number index. With address, it removes all
breakpoints at address.

Examples:

nb clear all breakpoints (asks for verification)
nb #1 clear the breakpoint in slot number 1

nb .loop clear all breakpoints at the label "loop”

m

m [#index] range

m [#index] address.size

m [#index] address [.size] op {value | {iaddr} | old}

§ The m command alone lists all memory checkpoints. The list appears in a
form suitable for saving (with transcript) and restoring (with load).

With a range, it sets a range-type checkpoint. The default count for range
is 2 (a word); there is no default start.

With an address and size it sets a comparison checkpoint which will become
TRUE when the value there changes. The command "m address.size ! =
old" does the same thing.

Note that address may be a complex expression; see the examples.
The last form sets a comparison checkpoint, as follows:

The .size field is either .b, .w, or .1. The size field can be omitted, but if it
is present, there must be no space between it an the address argument.
That is, ".flag.b" is correct for a byte-size checkpoint address and size,
while ".flag .b" is not. If .size is missing, the default is .w (two bytes).

(Unfortunately, since the memory checkpoint command treats the trailing
part of the address argument as a size indicator (.b, .w, and .1), you can't
have a checkpoint on a compound symbol specifier whose last component
1s a two-character symbol starting with a period (' .’).)

The op (operator) can be one of the following:

OPERATOR COMMENTS

§> s<= §>=§< Signed comparison

u> u<=u>=u< - Unsigned comparison

== 1= Equal, not equal

Vs vc Overflow set, overflow clear
><=>=< Same as signed

= Same as ==

cs cc Same as u< and u>=

If the operand is enclosed in braces, it is indirect: iaddr is the address of
the operand used for the comparison. When the checkpoint is evaluated,
as many bytes are fetched from iaddr as are used at address -- that is, the
size of the checkpoint controls them both.

If the operand is the word old, it means to use the initial value at address
for the subsequent comparisons. This lets you catch a byte, word, or long
value when it changes, and is faster than the equivalent range-type
checkpoint. The "old" value is reloaded internally at the start of each
trace/go command.

Otherwise, the operand is evaluated as an expression, and its value is used
for the comparisons.

Note that for the indirect comparison type, a pair of braces encloses the
second operand ("{iaddr}" in the example). You really type the braces;

they are not there to show syntax.

If the #index argument is present, the new checkpoint is placed in slot
number index. If there was already a checkpoint in that slot, the old one is
removed first. This option is useful when using auto-execute aliases. See
the section AUTO-EXECUTE ALIASES in the chapter PROCEDURES,
IF, GOTO, DEFER, AND ALIAS for more information. :

Examples:

m List memory checkpoints

m .foo > 10 Stop when foo.w (default size) > 16 ($10).

m .foo > old Stop when foo.w exceeds its initial value.

m .buf[10] Stop when anything in the 16 bytes starting at buf
changes.

m #3 .buf[10] Same as above, but place the checkpoint in slot
#3.

m 438.1 Same as "m 438[4]"

m{2+ 2).w Same as "m 4.w" and "m 4{2]"

m 438.1 < {43C} Stop when the (long) value at 438 is less than the
(long) value at 43C.

m 12030 != old Stop when 12030.w changes value.

m 12030{2] Stop when 12030.w changes value (see below).

m 12030 Same as above (default count is 2).

Notice the last three examples. They all seem to do the same thing: stop
when either of the two bytes starting at 12030 changes. The range type is
less desirable, though, for checking small areas (one, two, or four bytes),
because the range type computes the CRC (cyclic redundancy check) for
the range, and compares it to what the CRC was when the trace/go
started. This takes a long time, and, more importantly, changes can
actually be missed if both the original and new contents result in the same
CRC value.

4-5

nm

[{ address | #index }]

The nm command alone, like the nb command, clears all the memory
checkpoints. It asks for verification first: space,’y’, and 'Y’ mean "go
ahead," any other key aborts. With address, the command clears all
checkpoints with that address. With #index, the command clears
checkpoint number index. ”

Examples:

nm Clear all checkpoints. Ask for verification first.

nm #3 Clear checkpoint number three.

nm .flag Clear all checkpoints with the value of "flag" as
the address.

TRACE AND GO

The trace and go commands are the only ones which cause the client to
execute instructions. When they stop, the reason for the stop is printed
(e.g. "Breakpoint"), the client’s registers are displayed, and the instruction :
at the (new) PC is disassembled.

When the conditional branch instructions are disassembled at an address
that matches the current PC, either because you used the set command
with no arguments, or after a trace, or during a verbose trace, the letter T
or'F will appear between the address and the opcode: means the
condition is false, and the branch will not be taken. This applies to other
conditional instructions as well, such as beq. It does not apply to
conditional floating-point instructions.

The CPU register display includes a mnemonic display of the SR. The
mnemonics are as follows:

SuU supervisor mode 4
TR trace bit set
IPL=x x is the IPL
CS, CC carry set, clear
ZR, NZ zero set, clear]
VS, VC overflow set, clear

XS, XC extended carry set, clear

MI, PL sign bit set, clear

4-6

t[{count | x | w}]

The t (trace) command causes the client to execute in "trace mode." With
no count, the client executes one instruction. With a count, the client
executes that many instructions. With a count of X', the client executes
"forever” -- until a breakpoint, memory checkpoint, or exception causes a
stop.

With a count of 'w’, the t command executes one instruction at full speed.
This is handy if it is a "jsr" or "bsr" instruction: in those cases, the whole
subroutine is executed all at once, and the trace stops at the instruction
A following the "jsr" or "bsr."

See the section TRACE AND UNTRACE in the chapter THE CLIENT,
BREAKPOINTS AND CHECKPOINTS: DETAIL for more information.

ul[{count | x}1

The u (untrace) command is just like the t (trace) command, except that
the client executes in "untrace mode." This means that trap-type
instructions are not treated specially. Note that uw doesn’t make sense
and isn’t allowed.

vi{u | w}][count]

The v (verbose-trace) command begins another kind of trace: before each
instruction is executed, it is disassembled and displayed on the screen.
After it executes, the values of all registers which changed are displayed.
Then the next instruction is disassembled, and so on. Use " S to pause the
trace, ™ Q to continue it, and "~ C to stop it.

With no count, the v command will trace forever (until a stop or until ~C
is used). The verbose trace executes in "trace” mode, meaning that a trap
handler is executed as though it were a single instruction. With a count,
that many instructions are disassembled and executed.

With "u’, this command traces instructions in "untrace” mode.

With 'w’, instructions are traced (in trace mode), but the bsr and jsr
commands are treated specially: they are executed at full speed, like the
tw command. Also, the vw command stops when it encounters the rtd,
rtr, rte, or rts instruction.

Examples:

trace one instruction

trace four instructions

trace forever (until a stop)

execute through a subroutine at full speed
untrace one instruction

untrace four instructions

untrace forever (until a stop)
verbose-trace 9 instructions

verbose-trace forever (until a stop)

g [range]

The g (go) command causes the client to execute at full speed. It turns

control of the computer over to the client, after setting the breakpoints.
The go will only stop when a breakpoint, exception, or the stop button

causes a stop.

The default start address for range is the current PC. The default count
means "forever."” In fact, you can’t specify a count for this range; you can
only use the "start" or "start, end" or ",end" forms of the range. If you
specify an end, a temporary breakpoint is set at that address. This is
sometimes called "go until,” because you are saying, "Go until this spot,
then stop." See the examples below for more.

Examples:

g Go forever (until an exception or breakpoint)
g .main Set PC to main, then go.

g ,.subproc Set a temp. breakpoint at subproc, then go.

g

.main,.subproc Set PC to main, set a breakpoint at subproc,
and go.

Note that the "go until" forms actually go until the end address or some
other exception. Note also that they clear the temporary breakpoint when
the go stops, for whatever reason. Finally, note that there must be at least
one breakpoint slot available for the "go until" to work.

MEMORY

The following commands display and set memory in various ways.

1{ range]

The 1 (list) command disassembles memory into 68000 mnemonics. The
default start for range is the place where the last 1 command left off, but
the exec command and all the trace/go commands set the default start to
the new PC after the command is finished. The default count for range
produces 12 lines of disassembly, not any particular number of bytes.

The list command takes the range as a guideline: the last instruction it
disassembles is the one containing the last byte of the range, even if the

instruction extends beyond that byte.

The disassembly listing you get looks something like this:

myprog:

00012214 move.l #%$12214,al myprog
0001221A lea.l $12214(PC),al myprog
0001221E move.] al,$12004 myvarl
00012224 move.l $12004,$12008 myvarl,myvar2
0001222E move.l $4BA.w,d1 clock
00012232 addq.l #3,d1

00012234 bra.b $12214 myprog

The listing has four columns: the disassembly address is printed in the first
column, then the opcode and size, then the operands, and finally any
symbols matching the values used in the operands.

If there are any symbols with the same value as the address of the
instruction being disassembled, they are printed out above the disassembly
line (like the label "myprog:" above).

The names in the right-hand column are the names of symbols matching
the operands, separated by commas. If there are two numeric operands,
and there is at least one symbol matching each of them, the symbols for
each operand are separated by a semicolon.

Operands which are less than $100 do not get matching symbols printed: it

would be too confusing, since so many symbols lie in this range, and
picking out the one which mattered in any particular instruction would be

4-9

impossible for the debugger and difficult for the user. You can list all the
symbols with a given value using the where command.

If you are on a 68020 or 68030, the 68881 floating-point coprocessor
instructions are disassembled, and the 68030 PMMU instructions are
disassembled. (The 68851 PMMU shares some instructions in common
with the 68030’s PMMU, but no effort has been made to disassemble for
the 68851 specifically.) See the description of discpu in the chapter
DEBUGGER VARIABLES for more information.

If an instruction cannot be disassembled, the listing will show ".dc.w 00"
where xx0o¢ is the value at that address.

Examples:

1 list 12 lines starting where the last 1
left off

1 .main[10] list from the label "main" up to and
including the instruction which ends at
or after main+$10

] “pe[1] list the (single) instruction at the
current PC

d{{w | 1}] [range]

The d (dump) command dumps memory. The default start for range is the
place where the last dump left off. The default count is 128 bytes. If w or
lis specified, the command dumps words or longwords, respectively. If
neither is present, bytes are dumped.

The memory dump consists of lines with the starting address on the left,
the memory bytes (or words or longs) in the middle, and the ASCII
representation of the memory on the right. The ASCII representation
shows the character associated with each byte in memory, if that character
is in the "printing character” set (32-127, 160-254 on the Atari ST). See
the section OPTIONS in the chapter DB: THE ATARI DEBUGGER for
more information.

The range argument is rounded up to a multiple of the size (2 for w and 4
for).

The d command alone, with no range or size specifier, dumps 128 bytes
starting where the last dump left off, and in the last format used. The

command "d10" dumps 32 longwords starting at Zero; if followed simply
by "d" another 32 longwords will be dumped: the size specifier is
preserved. A d command with a range will reset the size to word, long, or
byte (if neither w nor 1 is specified).

Examples:

d dump 128 bytes in the last format

dw dump 64 word (128 bytes)

dl dump 32 longs (128 bytes)

d [10] dump 16 bytes

dl 8(1] dump the bus-error exception vector

dw “sp dump the stack (as words)

dl 1000{@256] dump 64 longs (256 bytes) starting at 1000

s{{w | 1}][addr{value...]]
s[{w | 1}]rangevalue
s addr string

™ The s (memory set) command is used to change the contents of the client’s
memory. In the first two forms, the presence of w or 1 indicates that words
or longwords are to be set. If neither w nor 1 is present, bytes are set.

&

In the first form, if any values are present, the byte (or word or longword)
at addr is set to the first value. If there are many values, they are placed in
memory consecutively starting at addr and incrementing addr by the

4 appropriate number (1, 2, or 4 bytes).

If value is not present, memory is set interactively. A memory address is
printed on the screen, followed by the (byte, word, or long) value currently
there. At this point you can just hit the "return” key to skip to the next
location, or type a new value (plus "return”) to be placed at that address,
or a single period (".") (plus "return”) to terminate the set command. ~C
will also terminate the command. Typing "~ " will go back one entry.
Typing "<" will repeat the current entry, this is useful in examining 1/0
locations or shared memory.

The second form fills the specified range with the (byte, word, or long)
value. 1f the size of the range is not a multiple of the unit (1, 2, or 4 bytes),
it is rounded up.

The third form sets the memory starting at addr to the bytes represented by

string. The string is placed in client memory as-is: it is not null-terminated.

4-11

If exactly two or four bytes are being set, and they start at an even address,
the move.w or move.l instructions are used. This can be important if the
address in question refers to a memory-mapped 1/0 device.

See the section STRINGS in the chapter EXPRESSIONS, RANGES,
AND STRINGS for more information.

Examples:

s 400 set bytes interactively starting at $400
sl 400 set longs interactively starting at $400
sw 380[80] 1234 Fill 64 words with $1234

sw 6F0 FF20120-2 set these words at 6F0..6F7:FF20 0012

0000 FFFE
s 6F0 "Testing\r\n\x00" Set a C-type string (null-terminated) at 6F0

f{{w | 1}]rangevalue...
f range string

The f (find) command prints out the beginning address of areas of memory
within range which match the target pattern. It also sets the debugger
variable $ to the address of the first match.

The first form takes a size specifier (w for word, 1 for long, or nothing for
byte) and a sequence of values. The values are treated as being of the
indicated size, and are used as the target pattern for the find. The asterisk

("*") is a special value which will match any byte (or word or long): itisa
wildcard.

The second form takes a string as the target of the find. See the section

STRINGS in the chapter EXPRESSIONS, RANGES, AND STRINGS for
more information.

For the find command (and only the find command), the string escape "\?"
is a one-byte wildcard, which matches any value.

Note that each individual value is expanded or truncated to the size of the
find (byte, word, or long), then split into the component bytes. Ultimately,
the target is always a sequence of bytes. This means that a fw or fl
command can actually find matches at odd boundaries.

4-12

The find command always lists the address of each match. If what you are
looking for is found often, the list will be long and useless. You might
consider using the gag command to suppress the list; the $ variable will
still be set to the address of the first match. See the gag command for

details.

Examples:

f1 0,400 FCO008 Find the four bytes 00 FC 00 08 in the
] range 0. .3FF

: fw ~a1[100] 100 * 300 Find the six bytes 01 00 * * 03 00

f ~a7[100] "x\?z" Find the three bytes 78 * 7A

THE CLIENT AND SYMBOLS

These commands load the client and manage the debugger's symbol table. See the
chapter SYMBOLS AND DEBUGGER VARIABLES for more information.

exec [{ program [args...] on | off }]

The exec command loads the named program and sets it up for execution.
It also loads the symbols from that program, and sets the GEMDOS
command-line arguments to args, if any. The debugger variable "clientbp”
is set to the basepage of the loaded program. Finally, the basepage
information of the client is displayed.

With no arguments, exec displays the basepage information at *clientbp
(usually the basepage of the last-execed client).

Normally, when a client uses Pexec and executes a child, a message is sent
to the debugger with that child's basepage address. The "exec off"
command disables this. "Exec on” re-enables it. When remote debugging
with the resident stub, exec is off by default; you can enable it with "exec
on" when the client is stopped (e.g. because you hit the stop button).

When you start the debugger with a program argument on the command

: line, it performs an exec command for that program and any args
® following it.

4-13

When you are not remote debugging, you can use exee to load clients.
You must exercise care, however. Once you load one client, you may not
be able to load another. The first must either terminate or execute the
GEMDOS call Mshrink, to make memory available to the second client.
Also, if you stop one client while it is in a GEMDOS trap, then try to use
the exec command to load another client, GEMDOS will bomb
ungracefully: it is not reentrant. See the chapter OPERATING SYSTEM
CONSIDERATIONS for more information.

You can’t use exec to load programs when remote debugging. The first
form still works, however, to display basepage information, and the exec
on and exec off commands work.

Examples:

exec display basepage information

eXec myprog.prg load myprog with no arguments

€XeC myprog.prog -o xyz load myprog with command-line
arguments "-o xyz"

args [args...]

The args command sets the command-line arguments for the most
recently exec-ed client to args. If there are no args, the command-line
arguments in the client’s basepage are cleared out.

Examples:
args clear out the argument area of the client
args -o xyz set the argument area to "-0 xyz"

getsym program [textbase]

The getsym command loads symbols from the named program file.
GEMDOS programs are relocatable, so you must supply the textbase
argument to relocate the symbols. Some programs, notably those which
are placed in ROM, are absolute, and need no relocation. You don’t need a
textbase argument for these.

This command is used to get symbols for a program which is already
loaded, usually when remote debugging. Be sure that the program file you

4-14

Joad symbols from matches the file that the client was loaded from;
otherwise, the symbols may not match up.

The exec command loads symbols from the client program file
automatically: no additional getsym command is necessary.

When not remote debugging, do not use this command if you have stopped
the client in the middle of executing a GEMDOS system call: this command
uses GEMDOS to read the file, and GEMDOS is not reentrant. See the
chapter OPERATING SYSTEM CONSIDERATIONS for more

information.

Examples:

getsym myprog.prg " pc load symbols from myprog.prg, relocating
them by the current PC. Right after an
exec, “pc is the text segment base address
of the process.

getsym myfile.rom load symbols (absolute: no relocating)

sym name value

The sym command creates a new symbol in the symbol table. Name and
value are used for its name and value. The new symbol will be treated just
like all the existing symbols in the symbol table.

nosym

The nosym command deletes the entire symbol table. Because of the way
the debugger stores symbols, this memory is not recoverable: if the symbol
table took up 12K and you use the nosym command, you will simply lose

that 12K from the debugger’s memory space for the rest of the session. Db
will ask for verification before doing this, and will report that the memory

was "dropped on the floor.”

? [symbol]

The ? command displays the symbol table. If a symbol argument is
present, it lists from that symbol onward. Otherwise, it starts at the
beginning. Use ™S to pause the listing, ~ Q to resume it, and ~Cto
abort.

4-15

The symbol list consists of the symbol's name, its value, and its type, both
in hex and in English: each bit of the type has a name associated with it,
and if that bit is set the name is printed. If the bit is clear no name is
printed. In parentheses, the name of the symbol’s segment is displayed
using Mark Williams C's conventions, if the type field indicates one of the
MWC segments.

Examples:

? list the whole symbol table.
list the symbol table, starting with
"main”
same as above

where [expression JThe where command shows symbols with values at or
before the value of expression. If expression is absent, the current PC is used.

Where shows the value of expression, then lists the symbols with that
value. If there are none, it looks for the next lower valued symbol, and
lists all symbols with that value, with their offset from the expression.

Consider the following examples, assuming that the symbols "myprog" and

"start” have the value 12000 (hex), "main" has the value 12030, and "loop"
has the value 12038.

COMMAND OUTPUT
(a) where 12030 12030: main
(b) where 12034 12034: main + 4
(© where 12038 12038: loop
(@ where 1203A 1203A: loop + 2
(e) where 12000 12000: myprog, start
€3] where 12006 12006: myprog, start + 6
(2 where 30040 12FFE: loop + 1E002
(h) where 0 No symbols at or before 0.

The last few examples need more explanation. Examples (e) and (f) show
that two symbols with the same value will both be printed if necessary.
Example (g) shows that the output of where is not always meaningful:

stack

30040 is probably well beyond the intended scope of the label "loop", but
since that is the symbol with the next lower value, it is displayed. Example
(h) shows what happens when there are no symbols at or before the value
of expression.

The where command with no argument shows the where list for the
current PC. This is useful when a trace/go command has stopped because
of, say, a bus error: you can find out what procedure the PC is in just by
typing where.

The stack command tries to perform a stack traceback using the Alcyon C
calling conventions. The traceback listing always starts with the current
PC, and shows a where-type list for that location. Then the frame pointer
(a6) and stack pointer (a7) are reloaded like an unlk (unlink) instruction,
and the new PC is taken off the stack. The new PC and a where-type list
for it are printed, and the process repeats.

The traceback stops when the end of the stack is reached (i.e. the new
frame pointer is zero), or there is some error in the traceback (odd or zero
address, etc.).

The stack command tries to be clever: if the current instruction is "link,” it
deduces that you are at the start of a procedure, and that the top longword
on the stack is the return PC. 1f the current instruction is "rts,” it assumes
that the unlk instruction has already executed, and, again, the top
longword on the stack is the return address. These are not always valid
assumptions, but they work well enough for un-optimized Alcyon C
compiler output, and for most other compilers using the link/ unlk
conventions. '

If your program does not follow the C calling conventions, or follows them
differently (e.g. using something other than a6 as the frame pointer), this
traceback will do you no good.

REGISTERS AND VARIABLES
These commands manipulate the client’s registers and the debugger variables.

set [variable [value]]
x [variable [value } 1]

The set command alone displays the client’'s CPU registers: the PC, both
stack pointers, the SR, and all the data and address registers. In addition,
it disassembles the instruction at the PC (like I'pel[1]1 would).

With a variable argument, set displays the value of the given variable.
With both a variable argument, set displays the value of the given variable.
With both a variable and a value argument, variable is set to value.

The x command is just an alias for set: it’s there for compatibility and
because some people like one-character commands.

When the conditional branch instructions are disassembled because you
used the set command with no arguments, after a trace, or during a
verbose trace, the letter 'T means the condition is TRUE, and the branch
will be taken; 'F’ means the condition is false, and the branch will not be
taken. This applies to other conditional instructions as well, such as seq.
It does not apply to conditional floating-point instructions.

The CPU register display includes a mnemonic display of the SR. The
mnemonics are as follows:

SU supervisor mode

TR trace bit set

IPL=x x is the IPL

CS, CC carry set, clear

ZR, NZ zero set, clear

VS, VC overflow set, clear

XS, XC extended carry set, clear
MI, PL sign bit set, clear

4-18

Examples:

X show the CPU state

set sr show the SR

set st 0700 set the SR to 0700 (IPL 7)

set tl show the debugger variable t1

vars

The vars command lists all the debugger’s built-in variables. It is provided
as a reminder.

stubstate

The stubstate command displays the stub variables and their values. See
the section DEBUGGER VARIABLES in the chapter SYMBBOLS AND
DEBUGGER VARIABLES for more information.

REMOTE DEBUGGING COMMANDS

The following commands only have meaning when remote debugging. They are
not available when debugging on a single machine. See the chapter REMOTE
DEBUGGING for more information.

wait

The wait command is used to synchronize the head and the stub after the
slave machine is reset, or the terminate or continue commands are
used, or any other time that the head is out of synch.

check

The check command is used to check the integrity of the connection
between the head and the stub. It is meant for debugging the debugger. It
presents you with a list of keys it responds to, and begins a feedback test.
When an asterisk (*") appears, a successful turnaround has occurred.
When the letter 'S’ appears, the head could not send a command to the
stub. When the letter "T’ appears, the stub did not respond to the
command. When the letter 'Z’ appears, the size of the responding packet

was not as requested. In normal debugging, this command is not used.

terminate

The terminate command causes the client program to terminate. What
actually happens is that the stub executes the GEMDOS call Pterm, which
terminates whatever the current GEMDOS process is. Thus, this can be
used to terminate the client, or a child of the client.

continue

The continue command gives the stub a "go" command, but does not wait
for the "go" to stop. It returns immediately to the command prompt. At
this point, you may use any command which does not require access to the
stub state, the stub variables, the client registers, or any other memory on
the slave machine or interaction with the stub. Basically, this means the
getsym command and math commands (i.e. just type an expression at the
command prompt). Two more commands you can use after a continue
are wait, to resynch when the "go" stops, and quit, to leave the head
while the client is still running. Finally, the ! (shell) command can be used
to run a program locally.

PROCEDURES AND ALIASES
procedure [name [args...]]

The procedure command allows you to define procedures. See the
chapter PROCEDURES, IF, GOTO, DEFER, and ALIAS for more
information.

The procedure command alone lists the names and argument lists of all
procedures currently known by the debugger. This can serve as a reminder
of what a procedure does and how to use it, if the procedure’s name and its
arguments’ names are well chosen.

plist [name . .]

The plist command lists procedures (including name, argument list, and
body). With no arguments, it lists all procedures currently known by the
debugger. With one or more arguments, it lists those procedures. The list

appears in a form suitable for saving (with transcript) and restoring
(with load).

4-20

i

global [name . . .}

The global command creates global variables by name. One or more
names can be specified to create one or more global variables. If one of
the names already exists as global, nothing happens.

With no arguments, all global variables and their values are listed. The list
appears in a form suitable for saving (with transeript) and restoring
(with load).

If a name argument begins with a minus sign ("-"), any global variable
with that name is removed.

local [name . . .]

The local command creates local variables by name. One or more names
may be specified to create one or more local variables. Local variables are
visible only inside the procedure where they were created, or at the top
level (outside all procedures). When the procedure exists, they are
removed. They do not hold their values from one invocation of a
procedure to another.

With no arguments, all local variables and their values are listed. The list
appears in a form suitable for saving (with transcript) and restoring
(with load). (This is mainly useful for debugging procedures, not for
actually saving the state of local variables.)

If a name argument begins with a minus sign ("-"), any local variable with
that name is removed.

goto l[abel

The goto command causes a jump in a procedure from the current point
to the specified label. Labels in procedures look like comments ("#:label").
Labels must be on otherwise empty lines.

The goto command can be used to create very powerful constructs. With
auto-execute aliases, the possibilities are virtually unlimited: a breakpoint
can cause a script to be loaded or a procedure to execute, and with if and
goto anything can happen.

4-21

SAMPLE PROCEDURE

procedure sample maxval
This procedure shows the first “maxval integers.
local count ; set count O

if (targc < 1) abort Too few args
=z:1loo0p

print -n -d “count

set count (“count + 1)

if (“count < “maxval) goto loop

print

Arter loading this procedure (that is, typing it in or loading it from a
script), this might happen:

sample
Too few args
sample 3
012
; sample @20
% 0123456789 10 11 12 13 14 15 16 17 18 19

See the chapter PROCEDURE, IF, GOTO, DEFER, AND ALIAS for
i more information.

alias [nome [expansion]]

The alias command lets you create your own commands which are
ccmbinations of other debugger commands. The easiest explanation is by
exzmple: if you use the command "alias foo dl 0[8]" and later enter the
: _ command "foo,” the expansion of "foo" (in this case, "dl 0[8]") will be
(exccuted. In other words, once you alias a name to an expansion,
subsequent uses of that name as a command result in the expansion being
: used in its place.

There may be several commands in an expansion -- enclose the whole
extansion in quotes, and separate the commands with semicolons, like

th:s: alias show "dw .var1[2] ; dw .var2[2]" 1

Ar alias may contain other aliases. For instance, if you alias "dumpword"

4-22

to expand to "dw", the above alias could be written alias show
"dumpword .var1[2] ; dumpword .var2 21"

To change an alias, just redefine it with another alias command. To
.remove an alias, use unalias. ‘

Alias with no arguments lists all aliases. Alias with one argument .
1 displays the alias for that name. The list appears in a form suitable for
; saving (with transcript) and restoring (with load).

If an alias contains itself, or contains an alias which contains the first, an
infinite loop can result. To prevent this, the debugger will only expand
256 aliases in one line; more than that, and it assumes an infinite loop has
occurred and reports the fact. The debugger might also run out of memory
for keeping track of aliases before this happens.

See the chapter PROCEDURES, IF, GOTO, DEFER, AND ALIAS for
more information.

unalias name . ..

The unalias command deletes all the names from the alias list. You can
replace an alias simply by redefining it: you don't need to remove it first.

noalias

The noalias command deletes all aliases. It asks for verification before
doing so.

£] FILES AND SCRIPTS
These commands have to do with data files and script files.

read [file [address]]

The read and write commands are used to transfer data from disk to the
client’s memory and back. The "disk” in question is always the one local to
the head: this is not the same as the stub’s disk in a remote-debugging
system.

Read with no arguments displays the starting address and size of the last
file read. With two arguments, it reads the named file into the client’s
memory starting at the given address.

If the file cannot be found in the current directory, Db will search for it in
the directory given by the environment variable DBPATH.

e i

. When not remote-debugging, a third form is allowed: with a file argument
but no address, read will use the operating-system call Malloe to allocate
enough memory for the named file, then read it into that memory. This is
useful for patching a file, because you don’t care where it gets loaded in.
Note that there must be enough memory available to the operating system
for the file, or the Malloe will fail. This is especially a problem if you
exec a program but don't let it return memory to the OS: it is likely to
have all of memory allocated to it.

write file [range]

The write command is the companion to read. With both a file and range
argument, it writes the memory in that range to the file. With only a file
argument, it uses the start and size information from the last read
command. If the file already exists, the user is asked to verify that he
wants to overwrite it.

' If the file cannot be found in the current directory Db will search for it in
| the directory given by the environment variable DBPATH.

load file

The load command causes debugger commands to be read from a file
rather than from the keyboard. The file must contain normal ASCII text,
with lines separated with CR/LF. Each line is read in and interpreted
exactly as if it was typed at the debugger's colon (":") prompt. Other input,
such as verification, still comes from the keyboard.

If the file is not found in the current directory, Db will check for it in the
directory named by the environment variable DBPATH.

; These files are called scripts. By convention, script files (except for the
“ startup files db.re and rdb.rc) have the extension ".DB," as in
"SETUP.DB."

A script can contain the load command itself. In this respect, load can be
used as something of a subroutine call. No check is made for infinite loops.

4-24

Some commands are only meaningful when used in a script; they are
bgoto, fgoto, unload and reload.

In a script file, long commands can be split onto several lines. When a line
/in a script ends with a backslash (\"), the next line is tacked onto it as
though it was a continuation of the same line. This is not the case for lines
read from the keyboard.

unload
Unload causes the script currently being loaded (with the load
command) to end. If you think of load as a subroutine call, this can be
used as a premature "return” statement. This amounts to an fgoto
command to the end of the script, but is faster.
It is an error to use this command when not loading a script.

reload

Reload causes the script currently being loaded to be rewound to the
beginning. It amounts to a bgoto to the start of the file, but is faster.

[t is an error to use this command when not loading a script.

bgoto label
fgoto label

The bgoto and fgoto commands change the flow of control in scripts.

The label argument is the exact text of the line you wish to go to, and may
only be one word. Usually, this is a comment, like "#begin" or "#loop."

4-25

For example, consider the following text file:

echo line 1

xt0 O

#begin

print -n “tO

if (*t0 < 10) bgoto #begin
echo

echo end of loop

Loading this file will cause the following output:

line 1
01283456789ABCDETF
end of loop

The fgoto command has the limitation that the line containing its label
argument must be after the current position in the script. The bgoto

; command rewinds the file, then compares each line against the label
argument, while fgoto does not rewind the file first. If the label is after
the current point in the file, fgoto is faster, especially in large scripts.

Itis an error to use these commands outside of a script.

As a rule, script files are best used for setup scripts and loading procedures.
Use aliases for little things you plan to do more than once, and procedures
for complex things with looping and such. Aliases and procedures are kept
in memory, not in disk, and in procedures, the labels are indexed so a
goto executes much faster. The fgoto and bgoto commands are really
leftovers from the days when the debugger didn’t have procedures.

MISCELLANEOUS COMMANDS
bind [string [code]]

The bind command allows you to bind a string to a key. After that, when
you use that key, the string will be used as if it had been typed from the
keyboard. code is the ASCII code of the key to bind to: codes 0 through 31
are allowed (the control keys), except for 13, which is carriage-return.
(Rebinding carriage-return would be disastrous!)

With no arguments, bind lists the current key bindings. The list appears -
in a form suitable for saving (with transcript) and restoring (with load).

4-26

With one argument, bind prompts you to hit the key to which you want
the string bound. This is useful if you don’t know the key’s code offhand.
You should use the actual keystroke here: hold down "Control" and press
.the key in question. '

Examples:

bind list bindings.

bind "1 *pc[1i\r" 1 bind the string to ™ A.

bind "dw.xlist[10]\r" prompt for a key; bind to that key.

abort(args...]

The abort command prints out its arguments (usually an error message of
some sort) in exactly the same way as the print command, and then it
returns to the command prompt. Any script which was loading, procedure
which was executing, alias which was executing, or deferred commands
which were pending are forgotten: the debugger is reset to the very top
level, and waits for user input.

The # command introduces a comment. The rest of the line is ignored.
The # character isn’t properly a command at all: it is processed by the
command-line reader. When it appears in the position where a command
is expected, the rest of the line it's is thrown out.

transcript [{file[a] | off | flush | [printer}]

Transecript starts a transcript of all the output from the debugger, and all
the input from the user. The file argument tells what file to keep the
transcript in. When you leave the debugger for any reason (short of
resetting the head machine) the transcript file is saved and closed. The
command "transcript off" stops the transcript explicitly, and saves and
closes the file.

Transcript printer causes debugger output to go to the printer as well

as the screen. Note that output is buffered in a transcript buffer, so the
printer will always be slightly behind what is on the screen. (The buffer

4-27

size might be as much as 4K.) BIOS calls are used to send the transcript
data to BIOS device 0.

Transcript flush flushes the buffered transcript information explicitly.
. This is especially useful when transcripting to the printer, because
otherwise recent information will not have been printed yet.

Transcript alone tells the state of transcripting (on or off).

The a option to the transcript file form means "append” and causes the
transcript to be appended to the transcript file; otherwise, any existing file
with that name is removed (without warning).

3 The transcript command must be used carefully unless you are remote
debugging. On a single-machine system, you should be careful not to stop
1 the client while it is processing a GEMDOS call. When the transcript buffer
: fills up, it needs to be flushed to disk, and this is done with GEMDOS calls.
If the client is in the middle of a GEMDOS call, this will crash your system.

Note that the only ways to stop the client while it is in GEMDOS are to use
the u (untrace) command when at a "trap #$1" instruction, use the stop
button, or cause a bus error or other exception in GEMDOS. If you avoid
these conditions, transcripting should be safe even when debugging locally.
% See the chapter OPERATING SYSTEM CONSIDERATIONS for more

; information.

i
% gag[{on | off}]
i

The gag command causes output to be suppressed. With no arguments, or
with the on argument, output is suppressed until the next time the
debugger needs to wait for user input. With the off argument, the
suppression stops, and output resumes. You might use the gag command
in conjunction with transeript, so the information goes to the transcript
file without also being printed on the screen:

: transcript disasm ; gag on ; 1.main{2000] ; gag off ; transcript off
The above commands disassemble eight kilobytes of code and place the
disassembly in a file called "disasm." The disassembly is not displayed on

the screen. Without the gag command, the text would scroll by on the
screen, taking a much longer time.

4-28

exit

The exit command is used to terminate the stub and leave the debugger.
Whether remote debugging or not, this command causes all machines

.involved to return to a quiet state. In a single-machine model, the

debugger will remove itself and the stub and return to the desktop or shell.
If you are remote debugging, the head will tell the stub to remove itself,
then remove the communications layer from the slave, and finally remove

the communications layer from the master. Again, both machines should
return to the desktop or shell.

AT

R n——

quit

The quit command exits the debugger. If you are remote debugging, it
does not cause the slave to terminate or exit or aven to stop. It can be used
after a continue command, or after stopping a wait condition with ~C,
to let the client run while you do something else on the master machine.

When not remote debugging, this command is identical to exit.

help [topic]

The help command alone lists the debugger commands, the operators for
complex expressions, and the built-in variables, with a brief reminder of

what they do.

With a topic, the command gives a little help on that topic. Currently the
only topics available are command names and build-in debugger variable

names.

echo[-n][-i][-]args...

The echo command writes the args to the debugger output device (usually
the screen). The args are written on one line, each separated by a single
space. The -n switch will suppress the newline at the end of the output;

this can be used to concatenate the output of multiple echo or print
commands. The -i switch causes the output to be in inverse video, like

error messages from the debugger. The - switch (just a dash with no letter

after it) is used when the args start with a dash: it means "don’t try to
interpret the next argument as a switch."

Examples:

echo

echo -i Error
echo -n Error
echo -i -n Error
echo - -foo-

echo nothing plus a newline to the output device.
echo the word "Error" in inverse video.

echo the word "Error" with no newline after it.
echo "Error” in inverse with no newline.

echo the word -foo-. Note that "echo -foo-"
wouldn’t work, because echo would try to
interpret "-f" as a switch.

4-30

printargs ...

The print command prints (most of) its arguments 10 the screen.
Arguments which begin with a dash are switches, and modify what gets
printed rather than appearing in the outpnt. Without any conversion-
switches the arguments are printed verbatim, $0 the "echo" command is
now just an alias for print.

Normally, output is printed in "regular” (not inverse) video, and after each
argument a single space appears in the output, and a newline is output
after the last argument. The following "modifier” switches change this
default behavior:

MODIFIER ~ MEANING
-n don’t output a newline at the end of the line.
-i enter inverse video until -r or end of line.
-r regular video: cancel inverse video.
-t do not output a space between arguments.
-T do output a space between arguments.

The -t switch inhibits spaces starting with the one after the NEXT
argument; see the examples.

Other switches, called conversions, indicate that the next argument is to be
interpreted as an expression, and tell how to output the result.

CONVERSION OUTPUT RESULT AS...
-X hex
-d decimal
-0 octal
-b binary
-c a character (low 8 bits of result)
4 -s string (see below)

After the conversion character you can specify a field width. The output
will be padded with leading spaces to that width. If the first character of
the field width is a zero, the output will be padded with leading zeros to
that width.

The -s conversion means "string:" the result of evaluating the next
argument is taken to be an address in client memory, and a string is read
from there up to a null byte or the maximum field width. If the field width
starts with a zero, the string is padded with trailing spaces to that width.

The field width and zero-fill flags are ignored for the -c conversion. If you
actually want to print something that starts with a dash or contains
multiple spaces or unbalanced parentheses, use a String (q.v.).

PRINT COMMAND EXAMPLES

command: print two plus two is-d 2+2 and 4 + 4 is -d4 +4)
output: two plus twois4and 4 + 4is 8

(As elsewhere in the debugger, if an expression contains spaces you must
wrap it in parentheses.)

command: print sixteen hex is -t $ -x 10 .
output: sixteen hex is $10.

(The -t modifier prevents the spaces between arguments. It inhibits spaces
starting with the one that would come after the NEXT argument, so in this
case there IS a space between "is" and "$")

command: print -t "funcall(" -x8 lpeek(sp+4) , -x08 lpeek(sp+8))"
output: funcall(12D342,00285F20)

(more fun with -t, field width, and zero-filled field width: there are no
"automatic" spaces between args because of -t; the first arg is space-padded
to 8 chars, and the second is zero-padded to 8 chars. Also, the presence of
unbalanced parentheses means they have to be in strings.)

command: print test™ (a ' [b" test
output: test- (a’ f[btest

(If you want a leading dash, multiple spaces or unbalanced parentheses or
quotes, you need to quote the argument.)

command: print value: -d(wpeek(.width)) .value str: -sO@32 .string !
output: value: 321 str: abede !

(You can compute the field width; it can be any expression. If you also

want to specify "zero-filled" you put the zero before the expression.
"Zero-filled" for strings really means "padded with trailing spaces.")

4-32

if predicate command

The if command works as you might expect: if the predicate evaluates to
TRUE (nonzero), the command is executed. If the predicate is FALSE
_(zero), the command is not executed. :

The command part of an if command can be several commands, in the
same way that an alias can be several commands: if the command
argument is enclosed in quotes (single or double), it may contain several
commands separated by semicolons.

Examples:
if (*d0 = 0) echo dO is zero. Simple condition.
if ("t0 < 10) goto begin Part of a loop in a procedure

if ((wpeek “sp) = 1)\
"print (1peek (“sp + 2));defer g" See below.

The last example above might be an auto-execute alias for a breakpoint: if
the word at the top of the stack is 1 when the breakpoint is hit, the
longword on the stack after that is printed and the client is allowed to start
up again. Note the compound command, with the semicolon protected by
quotes, and the use of defer to start the client the next time the debugger
would normally display the prompt.

See the chapter PROCEDURES, IF GOTO, DEFER, AND ALIAS for
more information.

indirect addr

The indirect command causes the client memory starting at addr to be
read into a local buffer and executed as if it was typed at the command
prompt. The command ends with the first zero byte.
EXAMPLE:

. s .buf "echo hello\x00" ; indirect .buf

This example sets the string "echo hello" (plus a zero byte) into the client
memory, then executes the command at that address. Obviously, it prints
the word "hello" on the screen.

4-33

]

.
{
i
i
b!
hi

! [command-name { args ...]]

The ! (shell) command attempts to execute its argument as a GEMDOS

.command. The first word of the argument should be the full filename

(including the drive and path) of a GEMDOS program file (usually of type
.PRG, .APP, .TOS, or .TTP). When the program finishes, you will be
returned to the debugger right where you left off, and the debugger will
report the exit code of the program.

With no arguments, the shell command attempts to create a shell by
executing the file whose name is the value of the environment variable
SHELL.

Under some shells, the command-name need not be a full-blown pathname.
See the section THE SHELL COMMAND IN DETAIL in the chapter
OPERATING SYSTEM CONSIDERATIONS for more information.

dir [pathname]}

The dir command shows a directory listing. With no pathname argument,
it lists all files in the current directory. With a pathname argument, it lists
files in the directory specified by pathname. Pathname may be a wildcard
expression, or may consist of a path followed by a wild-card expression
(e.g. "*.*" or "sre\db??.c").

Be careful of ending dir commands with a backslash ("\") in scripts: the
trailing backslash will be taken as a continuation character, and the next
line will be tacked onto the current one. Using, for instance, "A:*.*"
rather than "A:\" has the same effect and avoids the problem entirely.

Examples:

dir list all files in current directory

dir A:*.* list all files in the root of drive A

dir src*.c list all files in the subdirectory sre with
extension ".¢" (C program source files)

4-34

CHAPTER 5
THE CLIENT, BREAKPOINTS AND CHECKPOINTS: DETAIL

This chapter goes into more detail concerning the client, breakpoints, and checkpoints.

THE CLIENT’S MEMORY

The client’s memory is accessed by the debugger in chunks of anywhere from one
byte up to one kilobyte. As a rule, when the head wants to examine the client’s
memory, it asks the stub to copy some into a buffer and send it over. Such copying
is done as bytes, to avoid address errors.

However, if the head asks for exactly two or four bytes at an even address, the
move.w or move.l instruction will be used. This means that word-addressed 1/0
registers will behave as expected.

The following commands show some times when this happens, assuming the addrs
are even):

Command Comments
dwaddr [1] Dumps exactly one word.
dwaddr [2] Also dumps one word (the number in

brackets is always the number of bytes in
question, not the number of "things").

sladdr Begins interactively setting longwords. (By
reading and writing them as longs.)

(wpeek addr) Both wpeek and Ipeek act this way.

maddr.w != { addr 2 } The operands of a comparison memory
check are read as words or longs, as
appropriate.

The £ (find) command always treats the thing you are looking for as a stream of
bytes, so words and longs don't have meaning. The indirect command, the
special message type FOxx, and the -s form of print also read client memory in
chunks, not as words or longs.

TRACE AND UNTRACE

Trace and untrace are really two modes of the same command. They both
single-step through the client. The difference is that trace mode treats instructions
which cause traps specially, while untrace mode does not.

5-1

Instructions which are treated specially are: TRAP, TRAPV, line-A ($Axxx), and
line-F ($Fxxx). However, on a 68020 or 68030, line-F is not treated specially. The
TRAPcc instruction isn't, either.

If the PC is at one of the special trap instructions and you use the t command, the
result will be that the trap instruction (and therefore the trap handler) will be

executed at full speed. When you next see the prompt, the PC will be at the
instruction after the trap.

If you use the u command in the same situation, only the trap instruction itself
will be executed, not the whole handler. When you see the prompt, the PC will be

at the first instruction of the trap handler, and the supervisor stack will hold the
trap exception frame.

Trace mode treats the trap instructions specially so you don’t have to worry about
stopping the client in the middle of the operating system, and so the OS will
execute at full speed. This way you can set memory checkpoints and then say tx
to trace through your program forever, with an opportunity between each
instruction, but without slowing down OS calls and without the possibility that you
will stop in the middle of the OS itself (which is deadly when not remote
debugging). Untrace mode is provided so you can debug a trap handler itself.

The v verbose-trace command without the u modifier is like trace: it executes a
trap handler as though it were one instruction.

MESSAGES

A message is a special type of communication from the client to the head.
Messages don’t come from the stub; they come from the client itself, or from
another part of the debugger. For instance, when you use the exec command, a
message is sent telling the head the basepage address of the program that was
loaded. If the load fails, or the client later terminates, another message is sent to
inform the head (and hence the user) of this, too.

‘ A program being debugged can send messages, too. Messages consist of a 16-bit
| message number and a 32-bit message argument vector. The negative message
numbers are reserved for use by the debugger, but a client may use the positive
message numbers freely. A client sends a message to the head as follows (in C):

xbios(11 ,S,msganumber,msg_argv);

Msg number is a 16-bit integer and msg_argv is 32 bits (e.g. a pointer or a long

5-2

integer).

Remember, negative message numbers are reserved for the debugger’s use. When
a message is received by the head with a positive message number, the message
number and argument vector are displayed, and the client is stopped. See the
section AUTO-EXECUTE ALIASES in the chapter PROCEDURES, IF, GOTO,
DEFER, AND ALIAS for more on what happens when messages arrive.

Note that messages provide an opportunity as well as a stop when they happen
during a trace/go.

Message types in the range $FO00 to $FOFF are special: they are commands from
the client to print something on the user’s screen. The message argument vector
holds the starting address of the (ASCII) test to display, and the lower byte of the
message number holds the length of the text. If the lower byte is zero (that s,
message number $F000), the debugger prints the text up to the first null byte.
This means that you can print some text on the debugger's output (and cause an
opportunity and a stop) with the following line (in C):

xbios(11,5,0xf000,"This is my message");
Some C macros such as the following would be useful:

#define DBMSG(msgnum,msgargv) xbios(11,5,msgnum,msgargv)
#define DBTEXT(s) DBMSG(0xf000,s)

Debugger messages can be used from any language which gives access to the Atari
ST’s XBIOS. Note that the stub itself masquerades as XBIOS function code 11
(decimal); do not use this call for anything but sending messages.

BREAKPOINTS IN DETAIL

Breakpoints work internally as follows: When a trace/go is started, the instruction
at each breakpoint address is saved, and the illegal instruction is placed at those
addresses. Then the client is started. If the processor comes across an illegal
instruction, it generates an exception, which the stub catches. It checks to see if
the address of the illegal instruction matches any of the breakpoints that were set.
If so, the count value of the breakpoint is decremented (but not through zero). If
the result is zero, the trace/go stops and all the instructions with breakpoints are
restored to their original values. Otherwise, the trace/go continues, starting with
the instruction which was "under" the breakpoint (i.e. the one replaced by the
illegal instruction).

5-3

MEMORY CHECKPOINTS IN DETAIL

Checkpoints have two phases: the initialization phase and the evaluation phase.
The initialization phase occurs when the head tells the stub to begin a trace or go.
The evaluation occurs during opportunities such as between instructions of a trace
and while processing a breakpoint.

Comparison checkpoints

If the old keyword was used in setting the checkpoint, the value at the
address is read into the operand field as the first part of the initialization.
Then, all comparison checkpoints are evaluated once, and their current
state (true or false) is saved.

At each opportunity, the comparison checkpoints are evaluated: the state
(true or false) is computed again. Ifit's the same as the old state, there’s
no stop. If the old state was TRUE and the new state is FALSE, the new
state is saved, but there’s still no stop. If the old state was FALSE and the
new state is TRUE (i.e. the comparison has become true), the checkpoint
causes a stop.

Range checkpoints

Range checkpoints are initialized by computing the CRC value for the
region in question. That value (16 bits) is stored in the checkpoint slot.
When an opportunity arises, the CRC is computed again. Ifit doesn’t
match the initial value, the checkpoint causes a stop.

Note that the CRC is not an infallible method for detecting changes. Some
changes can cause the region to compute the same CRC value as before.

MEMORY CHECKPOINTS ON VALUES IN REGISTERS

- With the ampersand prefix (e.g. &d1) you can get the address where the stub
stores the values of CPU registers during checkpoint evaluation. What you have to
realize is that the address you get is the address of the high-order byte of the
value. For memory checks on d1.l, then, "&d1.1" is the correct address
specification for the m command. If you want to perform your memory check on
dl.w, "(&d1 + 2).w"is the address expression you want. For d1.b, "(&d1 +
3).b" is what you would use.

To compare two registers to each other, you would use the indirect comparison

5-4

checkpoint type. Say you want to stop when al.lis greater than a2.l: the
command "m &a1l.l > {&a2}" accomplishes this. Of course, to compare words,
you have to shift the addresses by two: "m (&d1 + 2).w> {(&d2 + 2).w}"
stops when dl.w > d2.w.

It is also important to remember that not all CPU registers are longs: the SR is
stored as a word, so "&sr.w" is the address for the whole SR, and "(&sr + 1) .b"
is the address for the CCR part of the SR. See the section Stub Variables in the
chapter SYMBOLS AND DEBUGGER VARIABLES for a complete list of stub
variables.

CHAPTER 6
SYMBOLS AND DEBUGGER VARIABLES

Db can load symbols from programs and other sources. In addition, the sym command
can be used to.create entries in the symbol table to assist debugging. Debugger variables
are values the debugger makes available to the user by name, such as the basepage of the
program last loaded, and the type and argument vector of the last message, along with
eight temporary storage locations for use at the user's whim. Also, a user can declare new
global variables by name, and even local variables within procedures.

SYMBOLS

Symbols are loaded from programs being debugged using the exec and getsym
commands. These commands add the symbols from the files they load to the
debugger’s internal symbol table. The value of a symbol in the table can be used
in an expression by prefixing it with a dot: ".symx’ yields the number in the value
field of the symbol 'symx’.

Symbols which refer to addresses in the text, data, or BSS segments of a program
are relocatable symbols. In the program file, they have values as though the
program were running from absolute address zero. Of course, programs can’t run
there, so the program loader (and the debugger) must relocate the values of these
symbols to reflect the address at which the program is actually loaded. Db takes
care of this automatically.

If you specify ".main" and there is no symbol main in the symbol table, but there
isa _main, the debugger provides the leading underscore for you. Specifically,
the following variations are tried: prepend underscore; append underscore;
truncate at 8 chars; prepend underscore and truncate at 8 chars.

Db also supports GST-format symbols (also used by Lattice C from HiSoft). In this
format, symbols can be up to 22 characters long. The symbol table looks like an
Alcyon symbol table, with 14-byte symbol entries, except that when the $0048 bits
are set in a symbol’s type, the next 14-byte entry is actually an extension of the
symbol’'s name. A new variable, symsearch, contains a bitmap of methods to use to
look up symbol names. It is set automatically based on the types of symbol tables
encountered by the "getsym" and "exec" commands, including the implicit "exec"
when a program name is supplied on the debugger command line.

|
|
j

CONSTRAINED SYMBOLS

VALUE TYPE METHOD

0001 GST Truncate to 22 chars; failing that, prepend ’_’
and use 21 chars; failing that, prepend '@’ and
use 21 chars.

0002 MWC Truncate to 16 chars; failing that, append T

0004 ALC Truncate to 8 chars; failing that, prepend T
and use 7 chars.

A program file may have been produced by linking several modules together.
These modules each had some global symbols and some local symbols. If you ask
it to, your linker will include either both kinds of symbols, just the global symbols,
or no symbols in the program file. Global symbol names are usually unique in a
program file, but local symbol names might not be: there might be a local symbol
called "start” in both "filea” and "fileb," for instance.

If you have ain or another linker following the same conventions, you can specify
the file name before the symbol name to differentiate these two: "filea:start’ is
different from .fileb:start’. If fileb came from the library (archive) mylib, the
full specification is ".mylib:fileb:start'. Furthermore, there is something called a
"confined" symbol: a symbol whose scope extends to the two unconfined symbols
surrounding it. These symbols begin with '.’,’~’, and 'L’.

(Symbols beginning with 'L’ are generated by some compilers (notably Alcyon C)
as internal labels. Strictly speaking, they are not confined: they are unique within
each source file. However, they are considered confined so when their full
specification is printed by the debugger, you can see what procedure they occur
within.)

In general, symbols are uniquely identified by the names of all the levels enclosing
them: the levels of enclosure are archives, files, unconstrained symbols, and
constrained symbols.

6-2

Take the following code fragment, for example: '
: file init.s in archive mylib

clrmem:
move.w #COUNT-1,d0
move.1 #START,a0
.loop: clr.b (a0)+
dbra do0,.loop

The full specification of the symbol .loop is:

.mylib:init:clrmem: .loop
Be careful to distinguish between the period which introduces a symbol
specification and the period which is the first character of a symbol’s name. If this
Joop is the only one in the symbol table, it could be specified simply as ". .loop".
Still another way to differentiate symbols, useful for files linked without symbols
of type 'file’, is the number-sign (#). " symx#4" refers the fourth occurrence of

symx in the symbol table.

DEBUGGER VARIABLES

Debugger variables carry information which you can read, change, and use in
expressions. You can see the names of all the built-in variables with the vars
command, you can see or set the value of a variable with the set (or x) command,
and you can use the value in an expression with the backquote (") prefix. Finally,
you can get the address of the stub variables with the ampersand (&) prefix. The
stub variables are special because their true values come from the stub. A copy of
these variables is kept in the head, and when you trace or go, they are written to
the stub. When the trace/go finishes, their (possibly changed) values are read
back from the stub.

(In fact, the true values of all of the stub variables is read from the stub when first
you read or set any of them. If you change a variable, the new values are all
written to the stub the next time you trace or go. This saves time when you don't
read or set them.)

All debugger variables are stored as a longword in the head, and most are stored
as a longword on the stub. The ones stored as words on the stub have "(word)"
after them in the following table. To use these in a comparison-type memory
checkpoint, you would use, for example, "&sr.w" to refer to the status register.
Two variables, sfe and dfe, are stored as bytes.

-6-3

Stub Variables

The Stub Variables contain information about the stub.

NAME DESCRIPTION

cputype The type of CPU the stub is on (68xxx, word).
version The version number of the stub (word).

nbreaks The number of breakpoint slots (word).

nmems The number of memory checkpoint slots (word).
stubcode Pointer to the start of the stub.

breakptr Pointer to the breakpoint array.

memptr Pointer to the memory checkpoint array.

stubbp Basepage address of the stub process (for symbols).
clientbp Basepage address of the last-exec’ed client.

exspace See below.

The exspace variable contains the address of stub memory where exception stack
frame information is placed. The whole exception stack frame is copied from the
stack to this space: see the processor documentation for the sizes and meanings of
the stack frames.

Client Registers

The Client Register variables are the ones which mirror the actual CPU registers of
the client.

NAME(S) DESCRIPTION

sr The status register (word).

d0-d7 The data registers.

a0- a6 The address registers.

ssp The supervisor stack pointer.

usp The user stack pointer.

pc The program counter.

sfc dfe 680x0 registers (byte).

msp vbr cacr caar isp 680x0 registers.

a7 sp Translated to usp or ssp based on sr.

Other Build-in Variables

All other variables are not stored in the stub: they are just in the debugger.

.NAME(S) DESCRIPTION
4 t0-t7 Eight temporary variables you can use any way at all.
= $ Holds the value of the last match command or the first
match address from the last f (find) command.
mtype Holds the type of the last user message received.
margv Holds the argv of the last user message received.
rwstart Holds the start address of the last file read or written.
rwsize Holds the size of the last file read or written.
iodev Holds the current I/0 device number (see below).
bdev Holds the current BIOS 1/0 device number (see below).
discpu Holds the CPU type for disassembly (see below).

F 3 The discpu variable holds the last two digits of the CPU type, in decimal: 00,
" @10, @20, or @30 for 68000, 68010, 68020, or 68030. Instructions which are
legal on a 68030 but not on a 68000 through 68020 will not be disassembled if
discpu is not @30.

The iodev variable holds a number which telis the debugger what 1/0 device to
use:

VALUE MEANING

0 GEMDOS (screen / keyboard)
1 Serial port (polled)

2 BIOS (see below)

3 MIDI (polled)

When the value of iodev is 2, BIOS calls are used for input and output. The BIOS
calls take a device-number argument, and that device number is taken from the
variable bdev. No check is made to see if you have set a sensible value here.

Normally, the debugger starts up using GEMDOS (iodev value 0). Using the -s,
-b, and -m options on the debugger command line causes it to start up using
another value (1, 2, and 3, respectively).

USER-DEFINED VARIABLES

! The global and local commands create new variables by name. local is

generally used only in procedures: it creates variables which are visible only while

executing in that procedure. global creates variables visible from anywhere. In
each case, you use the variables the same wa
backquotes before their names.

y you use any others: you put

CHAPTER 7
PROCEDURES, IF, GOTO, DEFER, AND ALIAS

WHAT IS A PROCEDURE

- ‘ , A procedure is a list of debugger commands which is stored in memory and
. executed by name. A procedure consists of the following parts: '

1. The procedure name.
2. The list of arguments.
3. The list of commands making up the procedure.

Once you've created a procedure, you call it by using its name as a command,
followed by as many expressions as the procedure has arguments. The commands

in the procedure body are executed as if they came from the keyboard or a script
file.

Procedures can call other procedures, nesting to any depth (limited by the amount
2 of memory the debugger started with). They can contain any debugger command
except procedure itself.

Procedures can use the local command to create variables which exist only during
the execution of the procedure, and are visible only within the body of the
procedure.

One local variable, arge ("argument count”), is created for every procedure. It
tells how many arguments were provided for the procedure. You can call a
procedure and give it fewer arguments than it calls for. However, if you provide
too many arguments, you will get an error message. You can create a procedure
that can be called with fewer than the maximum number of arguments and still do
something useful.

SAMPLE PROCEDURE
Here is a sample procedure:

procedure sample maxval
This prints the first “maxval nonnegative integers.
local count ; set count O

if (~argc < 1) abort Too few args to procedure sample

#:1oop

print -n -d “count

set count (“count + 1)

if (“count < “maxval) goto loop
print

The first line is the procedure declaration: it starts with the procedure command,
then the name of the procedure ("sample”), then the argument list. This procedure
takes one argument, "maxval.”

The next line is a comment, telling what the procedure does. The third line is the
local command: it creates a local variable, visible only inside this procedure,
called "count." Local variables start out with no particular value, so it’s
immediately initialized to zero by the set command.

The next line is blank. You can have blank lines in procedures. When the
procedure is stored, they get translated into lines which start with "#," meaning
the whole line is a comment.

Next, we have an if command. This checks the variable arge to see if the
procedure was in fact given an argument. (You can’t provide more arguments than
the procedure calls for, but you might provide fewer.)

The next line (after the second blank one) is a label. You can tell it’s a label
because it starts with the two characters #: (hash colon). When the flow of
control in the procedure gets to this line, it will be treated as a comment (since it
starts with #). When storing the procedure, however, the debugger sees this as a
label, and saves this position in the procedure under the name after the colon (in
this case, "loop").

The print and set commands do what you'd expect, as does the if. The goto
after the if takes as its argument the name of a label in the procedure. The label
can be anywhere in the procedure. Labels, remember, begin with the characters
"#:." and have nothing following them.

After the if is another print command: this terminates the line which all those
print commands with the -n switch were writing to. This print command is
outside the loop, and so is not indented as far. The indentation is totally up to the
programmer, and is used to make the control structures of the procedure clearer.

The dot on the last line is just that: a dot, a period. That marks the end of the
procedure. It’s not a command: it's recognized in the procedure-creation phase as
the end marker.

Running this procedure looks like this (the colon is the debugger prompt):

sample 9
012345678

MORE DETAILS ON PROCEDURES

Procedures need a little more explaining. They have some restrictions and
unexpected side-effects.

In the first place, the goto command must be the last command on a
line. The implementation of the goto command is a little strange, and the upshot
is that it takes effect at the end of the line it's found on. Other commands after a
goto will execute before the goto itself does. You are not encouraged to take
advantage of this and it might change in the future. Just live under this
restriction: make sure no command ever comes after a goto command on a line.

7-3

Second, remember that local variables are searched before global variables, but
built-in variables are searched first of all. A global or local with a name like "pc”
will never be seen; the debugger variable "pc” will be used instead. A local with
the same name as a global, however, will be seen:

global myvar

set myvar 3

procedure foo
local myvar
set myvar 10
print myvar

foo

print myvar

The above sequence will print "10" followed by "3" because the local myvar is seen
inside the procedure, while the global myvar is seen outside it.

PROCEDURE-RELATED COMMANDS

The procedure command with no arguments lists the procedure declaration for
all procedures. This includes the name and the argument list. This can serve as a
reminder of what a procedure does and how to use it, if the procedure’s name and
its arguments’ names are well chosen.

The procedure command with one or more arguments begins the creation of a
procedure. The first argument is the name of the procedure to create, and the
subsequent arguments are the names of the procedure’s arguments.

When typing a procedure in from the command prompt (as opposed to loading it

1 from a file), the debugger prompts you with a double-colon ("::") prompt for each !
] line. The lines you type are not interpreted at all, only stored. The end of the 4
3 procedure is marked by a line consisting of a period only. At that point, the]
" debugger scans the procedure for labels and stores the procedure name, its

argument names, and the label positions in the procedure list. Only at this point is

any old procedure by this name removed from the list: if you use ™ C to abort the]
creation of the procedure, a pre-existing procedure with that name will not have E
been removed. 1

saving (with transeript) and restoring (with load). They begin with the
procedure command and end with a period alone on a line. With one or more

} The plist command with no argument lists all procedures in a form suitable for
t

!

| arguments, the plist command lists those procedures in the argument list.

7-4

DEFER AND ALIAS

This section describes the defer and alias commands, and offers some advanced
advice on using the debugger.

It is unfortunate but true that you may have to read this whole section before you
can really understand and use any of it. The explanations of alias, defer, and
compound commands are of necessity given in terms of each other. Please be
patient and read through this a couple of times.

ALIAS

The alias command takes two arguments: a name, and an expansion for that
name. After this, any time the name appears as a command, it is replaced
(textually) with the expansion.

(In the examples in this chapter, a line beginning with a colon () shows a
command which you can type into the debugger. The colon itself should not be
typed; it represents the debugger’s prompt.)

. alias foo dw.table[10]

After using the above command to define an alias for "foo" the "command" foo can
be used, and it will expand to "dw.table[10]" (which dumps the 16 bytes starting
at the label "table" as words). This is a very simple example of the alias command,
but still quite a timesaver for commands you use a lot.

Aliases are expanded in place in the command line, and any arguments to the alias
“appear at the end of the expansion. The following (extremely useful) alias
illustrates this:

: alias rwfind f rwstart[rwsize]

Now, the new "command" rwiind can be used to find values or text in the file
which has just been read with the read command: "rwfind 'some test™ expands to
the command "f* rwstart[* rwsize] 'some test™ which will find all occurrences of the
quoted text in the file.

AUTO-EXECUTE ALIASES

Auto-execute aliases have special names: they start with the letters "br"
or "mec" or "msg" and they are executed when a corresponding breakpoint,
. memory checkpoint, or message event happens, respectively. For example,
i} when the breakpoint in slot zero causes a stop, the debugger looks for an
alias called "br0" and executes it if it exists.

Breakpoint aliases start with br and end with the slot number they are
attached to (as one upper-case hex digit): br0 through brF if there are 16
breakpoint slots. Memory checkpoint aliases start with mc and end with
the memory checkpoint slot number, also as one upper-case hex digit.
Message checkpoints start with msg and end with the message number
they handle, as four upper-case hex digits: msg0000 for message type
zero, msgOFCA for message type $0fca.

When several events happen at the same time, such as multiple
checkpoints or a checkpoint and a breakpoint, only one auto-execute alias
is executed. Breakpoint aliases are checked for first (in ascending
numerical order), then checkpoints (also in order), and finally messages.
The first one of these which exists, and only that one, is executed.

If none of these exists, the default action is taken: the breakpoint,
checkpoint, and message type and vector are displayed on the screen.

Note that the auto-execute alias for an event can itself cause a trace/go. If
it does, and that trace/go is stopped by an event, the auto-execute aliases
are checked again and the first matching one is executed, so the right
combination of events and auto-execute aliases can cause a lot to happen
automatically. See the examples below for more.

When you set an auto-execute alias, be careful to remember that it is there.
For instance, if you set a breakpoint someplace, and create an auto-execute
alias for that breakpoint, and then you remove the breakpoint, the
auto-execute alias is still there. If you set another breakpoint and it
happens to go in the same slot as the first one, the auto-execute alias will
be triggered by it, probably resulting in something you didn’t expect or
want. Unalias is the command which removes one or more aliases from
the debugger’s alias table.

COMPOUND COMMANDS, introduced

If you enclose the expansion argument o alias (or defer or if) in quotation
marks, it can contain more than one command:

V: alias foo "echo xtable;dw.xtable[10};echo ytable;dw.ytable[1 01"

Now, when you use foo, four commands (two echoes and two dumps) will be
executed. Again, this can be a great timesaver. As explained below, it can be the
key to really powerful macros.

DEFER

The defer command takes one argument: a command to be executed the next
time the debugger returns to the top level for user input. That is, when the
debugger is about to print its prompt, the last thing it does is execute any deferred
command. The purpose of this is to allow for automatic execution of the client
and looping in macros, without using the alias stack.

Only the last defer command is remembered. Defer with no arguments causes
the debugger to forget any existing deferred command.

Here is an example of the use of the defer command:

: b .endloop

:m #0 &d7.1!= old

. alias mcO "print d7 changed: new value ~d7;defer &x"
X

If the client is about to start a loop, and the user wishes to be notified when d7
changes, the above sequence will do the trick. It will stop with the breakpoint at
the end of the loop, and each time d7 changes the auto-execute alias mcO will be
executed. This alias displays the new value of d7, then tells the client to continue
executing rather than returning to the command level.

The above example would still work if the last command in the alias were simply
tx rather than defer tx, but it would soon fill up available memory with the
stacking of alias expansions: using one alias in another amounts to a procedure

call.

7-7

Defer can also be used as a trick to allow arguments to an alias. Remember that
an alias expands from a command (like mwc or rwfind) into the expansion text, in
place. Any arguments to the alias are tacked on after the expansion:

: alias foo “"echo one two"

would cause "foo x y 2" to expand to "echo one two x y z." A macro to print the
Nth longword in a table starting at .table might be as follows:

: alias nthlong “defer print (1peek (.table + (“t0 *
4))) ;xto"
: nthlong 3

This works because the command nthlong is substituted with the text of the alias,
and the '3’ is tacked to the end of that. Because of the defer, the command "xtQ
3" will be executed before the print command, so tO will have the value 3 by then,
and the value at (.table + (3 * 4)) gets printed.

When the "argument” you're trying to provide is a number, it’s far better to use a
procedure:

procedure nthlong n
print (1peek (.table + (“n * 4)))

This use of defer is really just a leftover from when the debugger didn’t have
procedures. It's still useful for string arguments, though. (or it will be until the
debugger gets strings as a data type . . .)

COMPOUND COMMANDS, explained

As you can see from the examples above, the if, defer, and alias commands each
take a command as an argument. That argument can be a compound command
consisting of more than one simple command if it is enclosed in quotation marks:

alias mycmd "echo start mycmd;l;print end of mycmd"

Executing the above command, then the command "mycemd,” will cause the legend
“start mycmd" to appear, then a disassembly listing of 12 lines starting at the
current disassembly pointer, then the legend "end of mycmd." (Sure, it's silly, but
it’s just an example.)

The important point is that the semicolons are enclosed in quotes, making them
part of the argument to "alias" rather than being interpreted as separating the alias
command from the 1 and the print command. Without quotes,

alias mycmd echo start mycmd;l;print end of mycmd

the alias for mycmd would be "echo start mycmd" -- the echo command stops with
the first semicolon, and the 1 and print commands are executed in turn.

The alias for Mark Williams C argument string handling uses this trick: the alias
itself consists of two commands, a find (f) and a set (s):

. alias mwc 'f (1peek (“clientbp + 2c))[800] "ARGV="
; s $ 5a’

Note the use of single quotes around the alias, and double quotes around the
string argument to the find command. Single quotes match single quotes and
double matches double, but their interpretations are identical.

You can nest these expansions:

alias setbp \
"b #2 .mainloop; alias br2 ’echo)
loop;dw.table[10];defer g’ "

Once you create this alias, if you use the command setbp a breakpoint will be set,
and an alias will be created which will get executed when that breakpoint is hit (see
the section AUTO-EXECUTE ALIASES in this chapter). The alias which setbp
creates, called br2 (to attach it to breakpoint slot 2), contains a compound
command as its expansion: the compound command prints a message, dumps the
first eight words of a table (16 bytes), and then lets the program continue
executing.

(Unfortunately, you can’t nest more than two levels of compound commands,
because only the single- and double-quote characters protect semicolons, and any
more of them would look like closing, not opening, quotes.)

Another use for auto-execute aliases might be to show something on the screen at
the start and end of a certain procedure:

: b #3 .myproc

: alias br3 "echo entering myproc : defer g"

: 1 .myproc[800] 4e5e4e75

:b# $

: alias br4 "print myproc returns “dO : defer g"

Note the f (find) command in this sequence: it searches from the start of the
procedure, for 2K bytes, for the longword $4eSe4e75. That is two 68000 opcodes:
UNLK and RTS. Every procedure compiled with Alcyon C ends with these two
instructions, and the likelihood of finding that exact byte pattern anywhere in the
procedure except the end is very small, so the chances are that breakpoint #4 will
be set at the UNLK instruction. (If the procedure is more than 2K bytes long, the
find should have a longer count.)

The £ (find) command will dump the locations of all matches on the screen, even
though all we are interested in is getting $ set to the address of the first one. You
can suppress this needless output by surrounding the f command with gag on
and gag off. See the section GAG in the chapter COMMANDS for more
information.

7-10

CHAPTER 8
OPERATING SYSTEM CONSIDERATIONS

Db must operate within the constraints imposed by the Atari ST operating system. When
these constraints prevent using db in the manner needed, the user should consider remote
debugging. See the chapter REMOTE DEBUGGING for more information.

DB AND GEMDOS

When you don’t specify a command-line option like -s or -m for input and output, the
debugger uses GEMDOS to access the screen and keyboard. It is important to know, then,
that two programs can’t be using GEMDOS at the same time. If you stop the client while
it is executing a GEMDOS system call (like Fopen or Cconout), and the debugger uses
GEMDOS to print to the screen, GEMDOS will lose track of the client, and the next g
command will create havoc.

If you use the t, v, and g (trace, verbose:trace, and go) commands exclusively, and avoid
u and vu, there should be no problem, because they will never stop while the PCis in
GEMDOS. However, if you use the u (untrace) or vu (verbose-untrace) commands, you
could stop while in GEMDOS, and that would be bad news.

Furthermore, if the debugger is using GEMDOS for input and output, and you hit the
STOP button while the PC is in GEMDOS, you are in the same boat. So the lesson is to
use t, v, and g exclusively when using GEMDOS for input and output, and don’t use the
stop button unless you are sure the PC is not in GEMDOS or the BIOS.

Even when it’s not using GEMDOS for its input and output, the debugger uses GEMDOS
for certain commands, like exee (to load a file and set it up for execution) and getsym
(to load symbols from a file). Thus, you should be sure that the client is not in the middle
of GEMDOS when using these commands. Another command which can cause even more
trouble is transeript, because the user has little control over when the buffer will be
written to disk. When debugging locally, use transcript with extreme care, making sure
that you don't stop while the PC is in GEMDOS.

When remote debugging, none of this applies, because the slave and the master have two
independent GEMDOSes.

DB AND MARK WILLIAMS C
Mark Williams C uses a different symbol table format from Alcyon’s. Notably, symbols are
stored in 16 characters, not just 8. Also, global variables in C get an underscore character

appended to them, rather than prepended as is the convention among most C compilers.
(The reason for doing this is so you don’t have to worry about name collisions with

8-1

:
i
[+
|

assembly language: by not using a leading underscore (or trailing, in the case of MWC),
you know you won't be using the same name as a C variable.) Db correctly interprets

Mark Williams C symbol tables, both in the old (before version 3.0) land version 3.x
formats.

Mark Williams C and some other environments use a trick to pass more than 127 3
characters’ worth of command-line arguments to their programs. The trick is to use the
environment variable ARGV, because the value of an environment variable can be any
length at all. There is a problem with this approach, however: since the environment is
inherited from one process to another, the child can’t tell if the ARGV in its environment

really came from its parent. MWC programs will take the debugger’'s arguments as their
own.

The way to fix this is to force the MWC program to think that there are no arguments in -
its environment. There is an automatic way to do this: place this alias command in your

db.rc file and use it after you exec an MWC program, but before the first trace/go
command:

alias mwc 'f (1peek (“clientbp + 2¢)) [800] "ARGV=";s § 52’

This alias searches in the client’s environment (the address of which is at “clientbp+$2c)
for the word "ARGV=" and changes the first letter of that word to a'Z". This prevents the
MWC argument-parsing code from finding "ARGV="in its environment (because it now
reads "ZRGV=") and the program will therefore look in the basepage for command line
arguments.

If you don't understand this whole discussion, or why the alias above works, that's okay:
just place the alias in your autoload file (usually "db.rc"), and type the command "mwc"
after you exec a client compiled with MWC. Then use the args command to pass
arguments to the client.

DB AND THE XBIOS TRAP

Db uses XBIOS function code 11 (that is, trap #$e when the word on the top of the stack
is $000b). The program you are debugging may install a handler for trap 14. However, if
the program is.a resident utility (sometimes called "TSR" for "terminate and stay resident)
you have to be careful when debugging it. Specifically, the debugger replaces the old
vector for trap 14 when it exists. Since your program linked into the trap after the
debugger did, the debugger can’t know how to remove itself from the linkage, so it simply
clobbers the trap 14 vector, removing your handler from the trap.

You can still debug TSRs which use trap 14, however. You can either run the TSR before
running the debugger, or run the debugger, and then exec your TSR, let it run until it
terminates (and stays resident), and then exec a program to test it, all without leaving the
debugger. If you run the TSR before running the debugger, you should arrange for the
TSR to let you know its text base address, so you will be able to use getsym to load its
symbols for debugging.

Naturally, since the debugger itself uses trap 14 function code 11, no user program should
use that same function code.

THE SHELL COMMAND IN DETAIL

The ! (shell) command can be used to leave the debugger temporarily, execute a
command, and re-enter the debugger where you left off. What it does is execute its
argument as a command, with the GEMDOS Pexec function. This requires that there be
enough memory available to the operating system to run that program. This is often not
the case; if you try it and get "insufficient memory" then that is the problem.

Some shells use the system variable _shell p in a special way. Db tries to detect these
shells. The presence of such a handler lets you pass _shell_p a command like "grep foo
* ¢" and let the shell figure out where to find grep, how to load it, and how to pass "foo
and "*.c" (or "all the files which end in .c") as its arguments.

You tell the debugger that you have such a shell by setting the environment variable
SHELL P to the value "yes" before starting Db. In most shells, the command to do this is

'setenv SHELL P yes’
or ’'setenv SHELL P=yes’

With no arguments, the ! command looks in your environment for the variable SHELL. If
it's found, the value is assumed to be the full filename, including the path and file type, of
your shell, and that file is executed.

I
|

-
i
i
I
e

When the program you execute (or the shell from $SHELL) exits, you re-enter the
debugger exactly where you left off, with the same state you had before you left.

Note that this command will only work when it is okay to make GEMDOS calls. See the
section DB AND GEMDOS in this chapter for more information. '

EXCEPTIONS

The trace/go commands can all cause the program being debugged to execute instructions
which cause exceptions in the 68000 processor. Most of these exceptions are caught by
the debugger. In particular, bus error, address error, etc. (exception numbers 2 through
9) are caught, as well as the spurious and uninitialized interrupt vectors. In addition, the
debugger has a provision for a "stop button:" hitting the stop button will cause the client

to stop. See the section STOP BUTTONS in the chapter REMOTE DEBUGGING for
more information.

The debugger contains a list of those exception vectors which it takes over. The debugger
restores all the vectors it takes over on exit. If your program or some program in your
system uses a vector which the debugger considers an error, like one of the reserved
vectors, or "spurious interrupt,” or "format error,” then you are just out of luck; you will
have to use the debugger carefully or not at all.

When a trace/go command causes one of these exceptions to occur, execution is
immediately stopped and control is returned to the debugger. The pe and sr are saved
from the exception stack frame, and all other registers keep their values. Note that after
bus error and address error on a 68000, the pe will not have a reliable value: the

instruction causing the exception is near the pc, probably somewhere from two to ten
bytes before it.

When a trace/go command stops because of an exception, the where command is
convenient to determine what procedure was executing at the time: it reports name of the
symbol closest to, but not after, the current pe.

DB, TOS, AND 68030

The debugger and TOS both run on 68030’s (the Atari TT), but some shoehorning was
required. One such shoehorn was a privilege violation handler. On the 68000, the
instruction "move sr, d0" is not protected. On the 68010 and up, itis. Some ST programs

use this instruction, especially to save the condition code register (CCR), which is part of
the SR.

To make those programs work on the 68030, Atari placed a privilege violation handler in
the OS. If a "move from sr" instruction caused the violation, the handler writes a new

8-4

instruction in that place: "move ccr.d0" (of course, this works for any destination, not just
d0).

Since the debugger catches exceptions (because they usually mean bugs in your program),
the debugger has to do the same thing. If you have a "move from sr" instruction in your
program and you run it on a 68010, 68020, or 68030, the debugger might demote it into
a "move from ccr” instruction. If this causes your program to fail, now you know why.

DEBUGGER MEMORY USAGE

The debugger must share memory with the rest of the operating system and with the
client being debugged. Under TOS, all programs are allocated the largest single block of
free memory, and if they plan to start up other processing they must give some of that
memory back to TOS.

The debugger program has a variable which controls how much memory it gives back to
TOS. That variable can be found from the outside because it is the first longword of the
data segment of the debugger program file. (This also applies to rdb, the remote
debugger.)

In addition to the client, this "outside” memory is-used by the read command when no
specific address was provided. The debugger’s internal memory is used for such things as
storing procedures and aliases, user variables, and stack frames when executing
procedures and expanding aliases. Finally the ! (shell) command uses this "outside”
memory.

If you find that the mix of debugger memory and client memory does not suit you, either
because the debugger takes too much (the client can’t load or reports that it's "out of
memory" somehow), or because the debugger takes too little (the debugger reports "out of
memory" when you load symbols or execute procedures), you can change this variable.

The variable controls the debugger’s memory usage by controlling how much of the initial
block the debugger keeps, and how much it returns to TOS:

_VALUE MEANING

-1 Keep the whole block. Not very useful for a debugger.
0 Keep only a bare minimum. Not likely to last long.

1 Keep 1/4 of the block, free 3/4 for clients.

2 Keep 1/2. .

3 Keep 3/4, free only 1/4 for clients.

+other Positive numbers keep that many bytes exactly.

-other Negative numbers return that many bytes exactly.

The first two values (-1 and 0) are not likely to be useful. If the debugger keeps all of
memory, there isn’t any left for the client. If the debugger keeps hardly any memory, it
might not have enough to keep track of its internal data structures.

For a local debugger (not remote debugging), a value of 1 is usually right. This leaves lots
of room for the client, but the debugger keeps enough for symbols, procedures and the

like. If you have a great many symbols and a small program, you might need to bump this
up to 2.

For a remote debugger, 2 or 3 are usually good enough. A remote debugger uses the
memory it keeps the same way as a local one, but the external memory is used only for
the ! (shell) command. If you have a great many symbols, -1 might even be necessary, but
in that case you will not be able to use the shell command.

8-6

You configure the debugger by actually changing the program file on disk. Once the
debugger has started, it’s too late for that debugger. Here is an example debugger session
where the user creates a new debugger program file (called "DB3.TOS") which has the
value 3 in this control variable:

TOTMMOOWP

read db.tos
Done. Start=17D240, size=27DC2
: sl (“rwstart + 1C + (lpeek (“rwstart + 2)))
196340: 00000001 3
196344 : XXXXXXXX .
: write db3.tos
Done. Start=17D240, size=27DC2
: exit

On line A, the user reads the executable file in. The debugger reports the result on line B.
Line C is an s (memory set) command: look at the complex expression carefully, and you'll
see that the address is ultimately the first longword of the data segment. (Or just type it
in as shown: it'll work even if you don’t understand it.)

CHAPTER 9
REMOTE DEBUGGING

You can use Db as a remote debugger. This means that you can have the main body of
the debugger (the head) on one machine (the master), and a little bit of the debugger (the
stub) plus the program you are debugging (the client) on another machine (the slave).

The advantages are that the debugger doesn’t use up the slave’s memory and other
resources (screen, keyboard, disk), and the program being tested doesn’t put the debugger
machine (presumably the one with all your files on the hard disk) at risk. Also, there are
no restrictions in terms of GEMDOS use between the client and the debugger, since there
are two machines and possibly two GEMDOSes. Finally, you can use the debugger to
debug an operating system: on one machine, you would need a working GEMDOS to load
the debugger, but when remote debugging you can actually debug the OS as it boots, and
you can set breakpoints in interrupt handlers.

When remote debugging, the master (the machine with the bulk of the debugger)
communicates with the slave (the machine with the stub and client) through a
bidirectional connection.

To use remote debugging, you have to load the stub into the slave machine. There are
two ways to do this: you can start a program containing the stub which initializes itself
and then loads your client program, or you can arrange for the stub to be resident in the
machine and then load the client the way you do any other program.

In both cases, you run the remote debugger head, rdbxxx, on the master machine.

The first method involves using the program "STUB.TTP" on the slave. This program takes
the name of the client (and any arguments to it) as command-line arguments, loads the
stub, then loads the client. When the client is loaded and ready, the stub sends a message
to the head. Then, you debug the client as usual. When the client terminates, the stub
sends another message to the head. If you use the exit command on the head, the stub
will be told to exit as well. It terminates the client, unloads the stub, and both machines
will return to the desktop or shell.

The second method requires that you establish a resident stub. This can be done by

running a "terminate and stay resident” program (called "STUBRES.PRG") on the slave
machine.

When remote debugging using the resident stub, you will not get messages when
programs start up. In all other respects, the stub is active (i.e. it still informs the head of
bus errors, etc.). You have to stop the slave (with the stop button) and explicitly enable
client-startup reporting with the command exec on.

9-1

B R A o R e P

S i

3
.
i
i
i

3

When remote debugging, the normal cycle is like this: The user starts Brdb on the master
machine, then starts the client on the slave machine, either with STUB.TTP or after
executing STUBRES.PRG. The head simply waits for the first activity from the stub.

Eventually, the stub sends a message to the head (e.g. CLIENT, STOP BUTTON, BUS
ERROR) and waits for the head to send it instructions. In response to commands from the
user, the head sends instructions to the stub (e.g. a user command "dump" means the
head has to ask for the contents of the client’s memory from the stub). When the head
sends a command to the stub, it waits for the reply before doing anything else. Usually,
the replies come quickly; a one-instruction trace, for instance, takes only a fraction of a
millisecond to execute. When the reply comes, the head can continue its business.

On the other hand, the reply may be a long time away, or may never come: consider a g
(g0) command which leads the client into an infinite loop. The reply will never come, and
the head would be waiting forever to find out what the result of the "go" was.

For this reason, the debugger does not wait forever for trace/go commands to finish.

After about 10 seconds, the message "Waiting . . . Press " C to stop waiting." appears. The
head goes on waiting for the stub to respond, but if you hit ~ C (control-C), the head will
stop waiting and return you to the prompt. The client is still running, and the effect is like
a continue command.

The continue command causes the head to tell the stub to run the client like a "go"
command, but it doesn’t wait for a reply.

When the slave is busy running the client, either because of a continue command or
because a go command didn't reply and was stopped with "~ C, the debugger returns you
to the command prompt. You can continue issuing debugger commands. Naturally, since
the slave is busy running the client, you can't issue any commands which need to access
the stub. This leaves only a couple of useful commands: the symbol-table commands
getsym, where and ?, and the expression-type commands (where you type an
expression and see the answer).

One command which is especially useful is quit, which, when remote debugging, doesn't
touch the slave at all, but returns the master to the desktop. If you want to let the client
run and then leave the debugger, just type continue and then quit. The client will
continue to run. You can even re-enter the debugger, and it will reestablish
communications with the stub when the client stops.

[Sometimes, the head and stub cannot reestablish communications, because they are out
of synchronization. When this happens, you have to reset the client, hit ~ C on the
debugger and say quit, and start over.]

If you issue a command which needs to use the stub, but the slave is busy running the
client, you will get the message "You must stop the client and use the wait command.”
This is how you resynchronize the head and the stub. Where continue issues a command
and doesn'’t wait for the reply, wait waits for a reply without issuing a command. What it
gets might be a repetition of the reply to the previous command, or it might be a new
reply (as after a continue or timeout).

9-3

	Table of Contents
	Chapter 1 DB: The Atari Debugger
	Chapter 2 Expressions, Ranges and Strings
	Chapter 3 The Client, Breakpoints and Checkpoints: An Overview
	Chapter 4 Commands
	Chapter 5 The Client, Breakpoints and Checkpoints: Detail
	Chapter 6 Symbols and Debugger Variables
	Chapter 7 Procedures, IF, GOTO, DEFER And ALIAS
	Chapter 8 Operating System Considerations
	Chapter 9 Remote Debugging

