Appendix A - Frequently Asked Questions About Jaguar

Q: I do not have an Atari TOS based machine.
but only have ST Software to work with my
developer package right now

A: The current versions of both the PC/MSDOS
and Atari versions are available online on
Compuserve and the Atari Software Development
BBS. Or you can contact Jaguar Developer
Support to obtain the PC/MSDOS versions of the
tools.

Q: I am not satisfied with the examples that came
with my developer’s package. Is there more deme
. code available?

E Q: I have trouble getting the debugger to transter
| information from my PC to my Alpine Board.

| Either the debugger says “No Bi-directional
Parallel Port Found” or it says “Error While
Reading FAST” during a transfer.

L. A: Either you do not have a bidirectional parallel
- port installed in your PC, or else you need to
 adjust the timing of the high-speed transfer.

f The Jaguar debugger communicates with the

f Alpine board via a bidirectional parallel port

| installed in your PC. Calling a port

| “bidirectional” means that it is capable of either
 receiving or transmitting 8-bits of information at a
| time.

| Most inexpensive 1/O cards for PCs are intended
I to be used for output only and do not feature
 bidirectional parallel ports. In order to work

- around this, some PC programs and hardware

| add-ons use the port’s control signals to receive

A: Atari is creating new demo code and exampies
all the time, and it’s possible that there have been
updates since you got your developer’s kit.. Look
on the developer support BBS and private Jaguar
Developer areas of Compuserve. (See Online
Support section of the Getting Started chapter
of the documentation.)

L

Q: What am I supposed to use as a 3-D object
editor?

A: You can use whatever you prefer. The
conversion utility out of our 3-D package uses
.3DS files from AutoCAD 3D-Studio v2.0 or v3.0
running on the PC.

data, rather than using the port’s data lines. This
allows them to do bidirectional communication on
a unidirectional port, but it is much siower
because it cannot transfer as much information at
once.

In order to achieve acceptible performance, the
Jaguar debugger requires a true bidirectional
parallel port. The Jaguar Developer’s Kit
inciudes a PC I/O card that features such a port.

It you are seeing a message that says “no
bidirectional parallel port found” then either the
debugger could not communicate with the Alpine
because the parallel port was incapable of
receiving information back from the Jaguar, or
else it’s possible that the Alpine board’s parallel
port is tied up for some reason. Reset your
Alpine board. If you still see the message when
you run the debugger, then you probably don’t
have a bidirectional port installed.

| ©1994 Atari Corp.

Confidential Information . o .\ Property of Atari Corporation

26 April, 1995

i
£

Page 2

Appendix A - Frequently A sked Questions About Jaguar

T AN e s

If you have installed the card included with the
developer’s kit, make sure it is configured -
correctly for your system. If you need assistance
with this, please contact Developer Support.

If you have a bidirectional port installed and are
seeing a message like “Error While Reading
FAST” during a transfer, then the timing of the
debugger’s high-speed parallel transfer may
require adjustment for your machine. The
debugger has a variable named “PPROT” which
allows you to adjust this. After loading the
debugger, type the following:

pprot = n

Where ‘n’ is a number from 1 to 9. Experiment
with different numbers until you tind one that
works reliably. After you find one that works
reliably, you can add this line to your RDB.RC
file so that this adjustment is made automatically
each time you run the debugger.

Another adjustment that has been known to help
is changing the ISA bus speed of your machine.

This is typically done in your BIOS setup screen
that is accessible when you first boot the system.

Q: I have problems with running GULAM on my
Falcon030.

A: You should make sure that you do NOT try to
run GULAM under MultiTOS, the multitasking
extensions to the TOS operating system. If you
want to work under MultiTOS then you should
use another shell, for example the UNIX C-Shell
style shell TCSH. TCSH is available online.

* %k %k

Q: The newest version of RDBJAG crashes under
MultiTOS.

A: When running on 68030-up systems,
MultiTOS features hardware memory protection.
RDBJAG installs itself into system interrupt
vectors. When other programs call interrupts, this

causes the system to think these other programs
are accessing RDBJAG's memory. RDBJAG
needs to allow other programs access to its
memory. This is controlled by the 'global’
memory protection flag in the program header.
The most likely problem is that this flag is
probably turned off and needs to be turned on. If
you don't know how to do this, please contact
Jaguar Developer Support. Alternately, you can
run MultiTOS with memory protection turned off.
This can be done with the MultiTOS CPX in the
CONTROL PANEL accessory. You will then
have to reboot for the changes to take eftect.

* Kk kK

Q: I tried taking out the Alpine board and putin a
cartridge, but it would not run. Is the cartridge
broken?

A: Most likely not. In order to run a cartridge on
a development system, it is necessary to hold
down the 'B' button on controller #1 when you
turn on the machine. This is because you need to
signal to the development console that the
debugging routines are not supposed to be
installed at startup, and that it should act like a
standard retail version of the Jaguar.

If the cartridge runs, but you hear a lot of static
noise, then you must connect a 1k resistor
between lines 4 and 5 of the header at the end of
the 10-connector ribbon cable that goes trom the
development console and plugs into the back of
the Alpine board (this is the STOP button cable).
This is only necessary for some systems with
serial numbers starting with less than K14... (See
The Jaguar Development System ROMulator
chapter of the Technical Overview section of the
documentation.)

* % %

Q: On my ATARI Falcon(030 I cannot establish
communication between RDBJAG and the Stub in
the development console - Help!

26 April, 1995

Confidential Information i, a.¥ Property of Atari Corporation

© 1994 Atari Corp.

Appendix A - F requently Asked Questions About Jaguar

Page 3

@A : This is a problem only with older versions of
RDBJAG. The current version of RDBJAG is
available online.

Q: The command OD does not work with my
version RDBJAG. What is wrong ?

A: The OD command is actually a DB procedure
which is defined in the OD.DB script file. This
script is normally loaded automatically by the
debugger through the RDB.RC startup script
(along with the scripts GPU.DB and FILL.DB).
These scripts implement a number of Jaguar
DSP/GPU-specific debugger commands. The

- problem is most likely one of the following:

1) RDB.RC was not loaded at startup because 1t
could not be located. The complete pathname for
" this script file must be contained in the RDBRC
environment variable. See the Configuration
section of the Getting Started chapter for more
information.

2) The RDB.RC file has been edited and no
longer loads the OD.DB script.

3) The OD.DB script file could not be found.
This script must reside somewhere in the search
path specified by the DBPATH environment

variable. See the Configuration section of the
Getting Started chapter for more information.

* ¥k %

Q: My source code developed under the TOS
based system does not assemble with the PC-
based tools.

A: While we intend to maintain backwards
compatibility to the highest possible degree, it is
sometimes not practical or possible to do this
while at the same time adding new features. See
the text files in the JAGUAR\DOCS directory for
information on changes to the tools.

* K %k

Q: How frequently are the development tools
updated ?

A: There is no particular set schedule for
updates. New versions are made available as soon
as they are ready. We are constantly improving
our tools, This includes expansion to other
platforms and strong improvements in user
interface. The MADMAC Assembler, ALN
linker, and RDBJAG/WDB debugger are updated
often, and the most recent versions are always
available online.

It would be a good idea to get into the habit of
checking the online areas at lcast once every week
or two 1o see what’s new and improved.

Q: I want to program parts of my program (i.e.
the user interface in the selection menus) in the
68000 using the C compiler. How do I avoid
unexpected crashes?

A: Most problems with code written in C happen
because C compilers do not know about Jaguar-

| specific requirements such as phrase alignment or
'~ double phrase alignment. To make sure that a file
that contains 68k and GPU or DSP code gets

linked correctly, you should follow some major
guidelines:

* Always link C-compiler code to be the last
module(s)

* Phrase align the end of every segment of
assembly language module you write. This
means separate alignment for text, data and
bss segment of each single module.

| © 1994 Atari Corp.

Confidential Information “7PR Property of Atari Corporation

26 April, 1995

:
§
}
i
I

Page 4

P AL A i s S AL i 1 | e Y

Appendix A - Frequently Asked Questions About Jaguar

The ALN linker has an option that can
automatically align the size of the segments
inside each inciuded module to a specified
boundary.

* Make sure that you phrase align ALL data you
are using/generating from the C-module(s). A
way to achieve this is to build a customized
malloc() routine that only gives back phrase
aligned blocks of memory. Always generate
the structures to work within these given
blocks. You may also use hard-coded adresses
to structures that have to be accessed in phrase
mode.

* It may work better if you define some of your
arrays and initialized data inside assembly
modules, and reference them as ‘extern’ in
your C code.

* ok ok

Q: I want to use the 'character painting' feature of
the blitter to use a 16x16 bitmap for my font.

A: The blitter can do this in 8 bit wide segments,
so you have to setup the blitter to do two blits of 8
bit source width.

* k %

Q: As there are objects that must be two-phrase
aligned, is there an '.dphrase’ feature in the
assembler ?

A: Yes, MADMAC can do this. You can also tell
the linker to automatically align each segment of
each module in a variety of different ways,
including single or double-phrase. But it is
generally a good idea to make sure that your
objects are located correctly without requiring
these features, either by preallocating memory for
the objects and corretly adjusting them or by
hardcoding their adresses.

See the MADMAC documentation for more
information.

Q: How 10 save highscores in the EEPROM of
my cartridge?

A: One of the sample programs provided in the
developer's kit demonstrates how to do this. See
the Sample Programs section tor more
information.

Q: I do not now how to setup sound. Where I find
the documentation ?

A: Refer to the sample program source code for
SIMPLE. Also investigate the Jaguar Synthesizer
and Music Driver. Also look into the Jaguar
Console Hardware Release Notes section of the
Technical Reference chapter.

* %k Xk

Q: My code seems to be too slow for what I want
to do.

A: There are many different ways of speeding up
code. In general, do not spend more time than
absolutely neccesary doing 68000 code. The
more you can utilize the GPU, DSP, and Blitter,
the better your program will run. Here are some
basic guidelines:

* Optimize all 68000 interrupt code to need the
absolute minimum of time.

* Try to keep the 68000 off the bus. For
example, don’t run 68000 code directly from
ROM space. Accessing ROM tekes as much
as 10 times longer than accessing DRAM.

* Don't use the 63000 or cven the GPU or DSP
for memory copy operations, use the Blitter.

* Use the Blitter in phrase mode where possible.

26 April, 1995

Confidential Information) 2 N Property of Atari Corporation

© 1994 Atari Corp.

i Appendix A - Frequently Asked Questions About Jaguar

Page 5

Use the GPU and the DSP for calculations
where possible. You may have them both
runnning at the same time.

* You may start the Blitter and do calculations
in DSP or GPU until the blit is completed.

* Be careful to interleave the instructions for
any GPU or DSP code you write so that you
avoid register wait states.

Please read the Jaguar Programming Tips &
General Procedures section of Appendix B.

* % %

Q: Does the Jaguar feature support for analog
joysticks and other special controllers?

A: Yes, you'll find a sample program included
with your development system. See also the
Jaguar Controllers and Controller Ports
section of the Technical Reference chapter.

* k *

Q: 1 have set up a list of 50 objects to be
displayed, but it does not run.

A: If you maintain the object list with a 68000
interrupt handler, you might be running out of
time during the interrupt routine because the next
interrupt occurs while you are still handling the
previous one.

You might be able to solve this by optimizing
your 68000 code, although if this doesn't work,
you may need to move your object list update
routine to the GPU. (Which is going to be the
better solution in the long run.)

The main limitation is not the number of objects
you have overall, it is the number of objects
which must be displayed in the same horizontal
line.

The main restriction on the size of the object list
is the time it takes for the Object processor t0
scan all the objects for a given scanline, rcad each

one's header, and copy data from the bitmap to
the line buffer (keep your bitmaps in DRAM, not
ROM!) This all has to take place in approx. 63.5
usec or less on NTSC systems (PAL gives you a
Jittle more time, but we suppose and urgently
suggest that you would want to have your
software running everywhere). The number
depends to a big part on DWIDTH and on the
hardware configuration for RAM access as set in
MEMCONT1 (don't change this register!).

Please read the Jaguar Programming Tips &
General Procedures section of Appendix B.

* %k %k

Q: I run out of time by using the object processor
for moving objects by just changing the XPOS
and YPOS fields of the objects. How to avoid
that?

A- Aside from any other optimizations of your
object list that may be possible, you may simply
be eating up too much bandwidth with an object
list that contains too many moving objects. As
general rule we would like to ask you to:

% Use the Blitter to draw/move the objects if the
objects are static for more than ten frames

* Move the objects with the object processor if
your objects move faster than cvery ten
frames.

Q: I want to use the MMULT instruction in GPU
and/or DSP. How is the data organized if the
second matrix is stored in RAM?

A: The organisation in RAM is word packed, as
in the registers. However, this instruction has
been designed for implementation of algorithms
that operate on word packed data structures as
8x8 matrices in discrete cosine transformations so
you should not use it for general purpose matrix
calculations. You in general are better off if you
spare the time for packing and unpacking the data

© 1994 Atari Corp.

Confidential Information “7PK Property of Atari Corporation

26 April, 1995

4
1
i

" Page 6

Appendix A - Frequently Asked Questions About Jaguar

and use an explicit sequence of IMULTN,
IMACN and RESMAC instead.

Q: My branch objects do not work as advertised.
Why?

A: There is a typo in the Jaguar Software
Reference Guide before Rev 2.2, May 3rd 1594.
The word 'not’ is missing in the description of the
BRANCH object type. The LINK field contains
the phrase aligned address that is used if the
branch is not taken.

Q: Are the DSP timer divider registers JPIT2 and
JPIT4 write accessed at the same memory
location?

A: No, that is a typo in the Jaguar Software
Reference Guide before Rev 2.2, May 3rd 1994.
The location for JPIT2 write access is $F10002,
for JPIT4 it is $F10006.

Q: I've created an object list that includes a GPU
interrupt object, but instead of the interrupt
occuring just on the scanline I've specified, it
appears to occur on every line.

A: There is a typo in the Jaguar Software
Reference Manual before Rev. 2.3 on page 17.
The Graphics Processor Object does not have a
YPOS field. Bits 0-2 are the object type, and bits
3-63 are DATA to be used by the GPU interrupt
service routine.

To work around this, simply use branch objects
immediately before your GPU object so that the
GPU object is called only for the scanline(s) you
desire.

Q: In the demos, all object lists have two branch
objects in the beginning. Why?

A: The two branch objects are mandatory to keep
the hardware happy. Unless your object list
contains only a single stop object, always include
these two branch objects at the beginning.

x ok ok

Q: Shading texture mapped surtaces using
SCRSHADE does not work correctly.

A: The documentation states "SRCSHADE may
be used with GOURZ, not with GOURD". There
is a bug in the blitter that requires GOURZ to be
set. See the Blitter BUG List section of the
Technical Reference Chapter.

k Kk

Q: My program code runs unreliably when [
switch the Object processor on and off during the
run of my code.

A: Never disable the Object processer once it is
running. Your goal is probably to turn off video.
You can do this by aiming the Object List pointer
at a single STOP object.

x ok ok

Q: Do the PWM DACs not work?

A: Correct, do not use the PWM DACs. They are
not even connected in the Jaguar console. Use the
[2S-Bus for sound activities. Refer to the source
files SIMPLE.S and SIMPLE.DAS, which are
part of the SIMPLE sound example program..

* k%

26 April, 1995

Confidential Information “7P%R Property of Atari Corporation

© 1994 Atari Corp.

') Appendix A - Frequently Asked Questions About Jaguar

Page 7

PQ: Accessing Jaguar registers and On-Chip RAM
sometimes has unpredictable results. What is
going on?

A: Never access the On-Chip RAM in the Jaguar
Chipset except by reading or writing longwords.
Same holds for ALL 32 bit wide registers.

kK& k

Q: Every time I use the 68000 clr.l instruction to
set registers in the Jaguar Chipset the result seems
10 be unpredictable. Why is that?

A: Never use the 68000 clr.] instruction for
accessing long words in the Jaguar GPU & DSP
address space. This includes both hardware
registers and internal RAM. As you can perform
the same operation more efficiently and more
quickly using other instructions, there should be
no reason to use clr.l anyway.

The problem has to do with the way this
particular instruction writes to memory, which is
different from most other 68000 instructions.
This problem can also happen with certain other
instruction and address mode combinations.
Please see the Hardware Bugs & Warnings
chapter for more complete information about this
problem and how to work around it.

% ok X

Q: Some sequences of GPU statements ar¢ not
working. Is this a hardware bug ?

A: The current revision of the GPU chip has a
L few minor problems which mostly would appear
only in cases where the running code would not

Q: The newer versions of RDBJAG cannot transfer data correctly to a Sylvester development system.

really make sense. Refer to the GPU/DSP Bug
List section of the Technical Reference Chapter.

* % k

Q: I want my object list update routine to do as
Jittle work as possible. Exactly which fields of
the objects need to be reinitialized before each
frame?

A: The following fields are changed by the object
processor and must be reinitialized after the end
of a frame:

Bitmap or Scaled Bitmap: HEIGHT, DATA
Scaled Bitmap: REMAINDER

Note that there are some intcresting effects that
can be achieved by not updating these fields after
each frame.

One such effect is that by arranging your data as a
vertical strip of frames and by setting the
HEIGHT field to the height of this strip (number
of frames * scanlines per frame), you can play
back an animation automatically without updating
the object's DATA pointer yourself. This works
because the object processor will keep updating
the display and incrementing the DATA field as
long as the HEIGHT field is non-zero. (This
requires a branch object before the bitmap object
so that the proper number of scanlines are done
during each frame.) You don't have to update the
object until after the end of the last frame.

A: Boy, do you have an old system! If you are still working on a Sylvester, you should immediately
¥ contact Jaguar Developer Support to exchange it. The Sylvester is very outdated and should not be used

" for development any more.

L ©1994 Atari Corp.

Confidential Information “7PR Property of Atari Corporation

26 April, 1995

B i e e e e T———

Page 8 Appendix B - Programming Guidelines

Below is a number of guidelines for Jaguar programming that have proven to be effective and efficient.

The use of standardized filename extensions for various types of files is strongly recommended. The
table below shows the standard filename extensions used by Atari for all of our sample programs and
libraries:

Extension Filetype

.3DS 3D Obiject file for Autodesk 3D-Studio. Use the 3DS2JAG tool to convert into source code
compatible with the Jaguar 3-D Graphics library.
.ABS DRI/Alcyon format absolute location executable program file. Output from ALN Linker.
This extension has also been used by some people for raw binary ROM image files, but
this usage is discouraged.
.ASC ASCII version of Jaguar Synth sound patch. This is a MADMAC source code file that is
typically included by one of the source code files used with the Jaguar Synth and Music
driver.
AVl Microsoft Video For Windows film file.
.BIN Binary data. This could be a binary image of program code, data, a picture, or whatever.
The LTXCONV utility used with the GASM assembler creates .BiN files containing the ‘
combined TEXT & DATA sections of the assembled file(s).
.BPG BPEG Compressed image file. BPEG is the current flavor of JPEG used with the Jaguar.
.C C source code file.
.CCR Chunky-format 16-bit CRY Cinepak film
.CMP Compressed sound sample, created from a raw 16-bit (stereo or mono) sound sample file |
using the SNDCMP utility.
.COF Common Object File absolute location executable program file. Output from ALN Linker.
.CRG Chunky-format 16-bit RGB Cinepak film i
.CRY Madmac source code file for a CRY-format graphics image, typically converted from Targa 1
format using the TGA2CRY utility. |
.DAS DSP assembly language source. This extension is used for files that contain source |
exclusively for the DSP, to be assembled by either MADMAC or GASM. |
.DB Debugger script file.
.DTA Binary image of program DATA segment. Created by FILEFIX utility.
.ENV Envelope definition file. Used by the Jaguar Synth & Music driver.
.GAS GPU assembly language source. This extension is used for files that contain source
exclusively for the GPU, to be assembled by either MADMAC or GASM.
H C inciude file.
INC Madmac/GASM include file. Typically used to contain equates and macro definitions.
.J3D 3D object data in MADMAC assembler source format. Output from the 3DS2JAG utility.
Must be compiled by MADMAC.
JAG Jaguar JPEG compressed graphics image. Created by the JAGPEG utilities. (Note that
JAGPEG has been replaced by the BPEG package. Also, the 3DS2JAG utility that
converts Autodesk 3D Studio into source code format for the Jaguar 3D libraries once also
used the .JAG extension (it has since been changed to use .J3D).
LTX GASM assembler output file. The GASM assembler does not output files that are
compatible with the ALN linker, so .LTX files must be converted using the LTXCONV utility.

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1994 Atari Corp.

Appendix B - Programming Guidelines Page 9

Extension Filetype '

LZSS Compressed data file. This is a binary file containing raw L ZSS-compressed data. It
is created by the LZJAG utility. This is linked into your program, and then decompressed
using the DELZJAG routines.

.MID MIDI score file. This is a MIDI file output by a MIDI sequencer. You feed these files to the
PARSE utility to create a music score usable by the Jaguar Synth & Music driver.
.0 68000/mixed object module. Object file created after assembling a .S file with MADMAC

Some of the conversion tilities create MADMAC source code files that don't always end in
filename extensions of .S, and they may also use the O filename extension after being

assembled. _
.0J DSP (JERRY) object module. Obiject file created after assembling 2 .DAS file with
MADMAC (Note that GASM does not create standard object modules.)
or
Some older projects have used an extension of .GD for DSP object code. However, the .OJ
.0D extension is preferred.
0T GPU (TOM) object code. Object file created after assembling a .GAS file with MADMAC.
(Note that GASM does not create standard object modules.)
or
Some older projects have used an extension of .0G for GPU object code. However, the
.0G .OT extension is preferred.
OuUT Parsed MID! file, output by the PARSE and MERGE utilities. This is really a MADMAC
source code file which is normally assembled into an object file using a .SCR extension
PTC Jaguar Sound Tool Patch File. These are the binary patch files used by the Jaguar Sound
g | ” Tool and the Jaguar Synth.
» & .ROM Alpine Board/ROM Image File. Created by FILEFIX utility, of saved from Alpine board
i using the debugger.

Using the debugger, & ROM file can be loaded into Alpine board by "read <file>.rom
802000" or “fread <file>.rom 802000" (FREAD uses faster 1/O routines)

Using the debugger, a program can be saved to a ROM file from an Alpine board by "write
<file>.rom 802000[1FE000]" for a 2 megabyte (16 megabit) program of "write <file>.rom
802000{3FE000]" for a 4 megabyte (32 megabit) program.

.S 68000/mixed assembly language source. This extension is used for files that contain
source either exclusively for the 68000 or mixed source for any combination of 68000,
GPU, and/or DSP.

.SCR Smooth-format 16-bit CRY Cinepak film (Note: This file extension is also used in some
cases to designate object files containing music data.)
.SCR Compiled MID! score file. This is an object file, the same as O files, except with a different

extension to highlight the idea that they contain MUSIC score information. Files with an
'SCR extension are to .MID files as .S files are to .0 files.

Note: This file extension is also used for some Cinepak Movie Files (Smooth CRY-format).

.SRG Smooth-format 16-bit RGB Cinepak film

.SYM Symbol Table File. Created by FILEFIX utility. This is the same basic format as an
executable program file, except with empty TEXT and DATA sections. Only the symbol
table has information in it.

TJTGA Targa picture file. The Targa format is a popular format for 16-bit and 24-bit RGB true
color graphics images. Can be converted into Jaguar CRY-format using the TGA2CRY
utility.

TX Binary image of a program’s TEXT segment. Created by the FILEFIX utility. The current
or version of FILEFIX produces files with a “.TX" extension. However, older versions created

files with the “.TXT" extension. Because the TXT extension is also used for ASCII text
files, this was changed to avoid conflicts.

3

© 1994 Atari Corp. Confidential Information 7R Property of Atari Corporation 26 April, 1995

!
%

g
i
]
]

- Page 10 Appendix B - Programming Guidelines

Extension Filetype

Waveform definition. Used by the Jaguar Synth & Music driver.

Please do not use the filename extensions shown above for file types other than those shown. This can
be a cause of great confusion. Perhaps the most common misuse of filename extensions is using ".ABS"
for ROM image files that should have ".ROM" extensions.

It is important that your Jaguar programs run at the proper address, start themselves correctly, and do
not try to write data at runtime into the ROM address space. With a development system, it is possible
for a program to do any or all of these things, and you may not even realize it's a problem until you try
to execute your program on a standard retail console. The earlier your programs avoid such problems,
the easier the task is.

Below is a short basic test procedure that should be tried frequently with all programs destined to
become a cartridge. It is by no means a complete and comprehensive testing procedure, but it will

confirm the basic operation of your program.

1) Set the Alpine's memory protection switch to "Write Enable™.
2) Download the code & data to the Alpine board. Make sure you are not downloading code or
data directly to the console's DRAM (i.e. memory addresses from $200000-down).

3) Set the Alpiné's memory protection switch to "Write Disable”.

4) Turn off the Jaguar console. Wait for about 20 seconds.

5) Hold down the 'B' button of Joypad #1 and turn the console power on.

6) The standard Jaguar startup screen should appear with the Atari logo and spinning Jaguar cube.

Release the 'B' button. Now press and release it again.

7 Your program should now start immediately. If it does not operate as expected, then you have a
problem that needs to be solved. This can include: trying to write to ROM, being at the wrong
address (your programs must start at $802000), or having bad or incomplete startup code.

8) Hold down the ‘B’ button of Joypad #1 again, and hit the RESET button on the top of the Alpine
board. You should see a repeat of steps 6 and 7.

The steps above should be the first stage of your overall test procedure. Of course, once your program
is known to pass this test, you need to subject it to a variety of more complete and more sophisticated
tests. No Jaguar program should be released to the public without having first passed a comprehensive

testing procedure.

26 April, 1995 Confidential Information 7R Property of Atari Corporation © 1994 Atari Corp.

Appendix B - Programming Guidelines Page 11

The following is a list of several tips for Jaguar programming. Some might seem obvious 10
experienced Jaguar programmers, but there are also some new tips that reflect newly discovered bugs or
simply better methods of doing things.

1) In order to guarantee proper system initialization, every Jaguar program must start out with the
standard startup code supplied in the JAGUAR\STARTUP directory of the standard Jaguar
Developer distribution.

2) Every object list must start with two branch dbjects. The first one should branch to a stop object
if VC < a_vdb, and the second should branch to a stop object if VC > a_vde. The a_vdb and
a_vde variables are calculated by the video initialization routine shown below in item 3.

3) Use the blitter in phrase mode whenever possible (it is much, much faster).

4) Because of a blitter bug, you must always set Al_CLIP to 0 prior to each blit, even if you aren’t
enabling clipping in the B_CMD register.

5) Don't rebuild your entire object list every vertical blank. Only update the individual fields of the
objects that need to be updated.

> 6) The GPU and DSP may not be reliably stopped once they are running by anybody but
themselves. This is a recently documented bug. GPU or DSP code which needs to run most of
the time but be stopped occassionally should monitor a semaphore and shut itself down when the
semaphore is given the “shutdown” value. (Alternately, a GPU or DSP interrupt could be used
to tell the GPU or DSP to shut themselves down.)

7) The YPOS field of GPU Interrupt Objects was misdocumented as existing. This field does not
exist. You can use branch objects to simulate the result of that field.

8) In order for GPU or DSP interrupts 10 be handled, those processors must be running. If no
program other program is running and you want interrupts to be handled, leave a small piece of
GPU or DSP code running that continuously checks 2 semaphore 10 determine whether it is OK
to shut itself off. Keep in mind that as long as the semaphore is in internal RAM, this uses no
bus bandwidth, so it shouldn’t affect the rest of the system at ali. Do not put cither the GPU or
DSP into a tight (i.e. one line) infinite loop.

9) When copying data to GPU or DSP RAM or /O registers, always copy long words.

10) When the Jaguar console resets, the interrupt stack pointers of the GPU and DSP are in an
undefined state. Always initialize these registers as needed.

¥ 11) Avoid creating object lists at assembly-time which are used directly from ROM at runtime. The
bus access speed for ROM is much slower than for RAM (up to 10x slower), and the amount of
time required to process your object list will increase dramatically, and some object lists may not
function at all. Always create your object list in RAM (or copy it to RAM before using it).

" © 1994 Atari Corp. Confidential Information 7R Property of Atari Corporation 26 April, 1995

T - I M

B oy ol e
R T i . R R e T

* Page 12 Appendix B - Programming Guidelines

12) Avoid displaying bitmapped graphics directly from ROM. Because of the greater bus access

times required for ROM, a bitmap object with data in ROM will use up the system bandwidth
available to the object processor (and therefore the bandwidth available to the rest of the system)
3 - very quickly. To save ROM space, compress the images using the JAGPEG or LZJAG utilities,
and then decompress them from ROM into 2 RAM buffer, from which they get displayed.

| 13) Use the GPU and DSP as much as possible, instead of the 68000. The optimal solution is to use
! the 68000 1o get the program started and load some code into the DSP and/or GPU, and then

shut the 68000 down using the STOP instruction.

However, if you are using the 68000 a lot, or are using it for time-critical routines (like a vertical
blank handler), copy your code from ROM to RKAM and execute it there. That way, the memory
| accesses done by the 68000 to read instructions will hog less of the system bus, leaving more
bandwidth available for the object processor, blitter, DSP, and GPU. Your code will also

execute more quickly.

4 14) To save ROM space, compress your code using the LZJAG utility and then decompress it from
! ROM to the execution address in RAM.

1) If you have a lot of blit operations to be done, especially from different processors or from

" interrupts, rather than wait around for the blitter to be available each time, when you could be
8 doing other processing, implement a GPU-interrupt routine that reads blit requests off a stack
| and sets up the blitter registers and starts the blit operation for you. Here are the basic steps

involved:

a) Define a structure that contains the values that need to be stuffed into the blitter registers.
Also include a pointer to a semaphore variable.

b) When you need to do a blit, set up one of these structures, and stuff a pointer to it into a
* variable. Clear your semaphore, and then force a GPU interrupt.

; ¢) The GPU interrupt handier will grab the pointer to the structure and stuff it into a stack. If the
i blitter is currently busy, the interrupt exits. If the blitter is currently free, the GPU interrupt
handler pops the pointer back off the stack, reads the structure, and stuffs the blitter registers to

start the blit. The interrupt handler will then exit.

d) When the blit is completed, another GPU interrupt will occur (you must set bit 8 of the
G_FLAGS register to enable this). The interrupt handler will grab the pointer to the semaphore
§ for the just-completed bit, and stuff a value into it that indicates that the blit is finished. If there
1 are any more blit requests waiting on the stack, the interrupt handler will grab the next one off

i the bottom of the stack and get it started.

Of course, this is just a rough outline, so the details are glossed over a bit, but you should get the

26 April, 1995 Confidential Information “7PK Property of Atari Corporation © 1994 Atari Corp.

Appendix B - Programming Guidelines Page 13

basic idea. Steps ¢ and d are done more or less invisibly to the processor and code that requested
the blit in the first place. As long as your actual calculations aren’t affected by blits that aren’t
completed yet, you’ll never have to wait for the blitter. Also note that using a GPU interrupt {0
put items onto the stack isn’t really necessary if all your blitter requests are coming from the
GPU in the first place.

© 1994 Atari Corp. Confidential Information “ZPR Property of Atari Corporation 26 April, 1995

T —— S—

Page 14 Appendix B - Programming Guidelines

This section focuses on the differences between the standard PC/MSDOS-based development system
and a development system based around ore of the Atari computers.

First of all, with only a few exceptions, the documentation for the tools applies to both the PC/MSDOS
version and Atari TOS version. In those instances where there are differences, they are noted.

A standard component of MSDOS is the command line interpreter COMMAND.COM. On the Atari,
there is no corresponding system shell; programs are normally launched through the GEM Desktop, part
of the system's GEM graphic user interface.

Without a full-blown integrated development environment of some kind, a command line interpreter is
essential for development work. Therefore, for the Atari we provide GULAM, a command line
interpreter patterned after the UNIX C-Shell. GULAM is launched from the GEM Desktop like any
other program, and once loaded takes over the system with its own text-based screen. GULAM uses
UNIX-style commands rather than MSDOS-style, but supports command name aliases, so you can
customize this to suit your own preferences. Please see the GULAM-specific documentation for more
information.

Also provided for the Atari is a version of MicroEMACS, a popular text editor. The GULAM shel!
actually has a version of EMACS built-in, but the one we provide separately is more recent and more
sophisticated.

Currently we provide the GNU GCC cross compiler that runs on PC/MSDOS systems and generates
68000 code. We do not currently provide the GNU GCC compiler for the Atari computers. Hewever,
the standard Atari version of GNU GCC used for building programs for the Atari TOS computers can
also be used to generate code for the Jaguar. We consider it likely that developers who prefer the Atari-
based development system are going to already have the Atari version of GCC. However, if you do not
have the Atari version, and do want to work with it, let us know. Other Atari-based C compilers can
also be used to gencrate 68000 code, provided they can output either DRI or COFF-format object
modules.

Please stay in touch with the Jaguar Developer Support people at Atari. We are looking forward to
helping you to make your product a software experience that takes the utmost advantage out of the
Jaguar's excellent hardware.

26 April, 1995 ' Confidential Information ™ Property of Atari Corporation © 1994 Atari Corp.

Appendix D - Jaguar Development Standards Page 15

To insure consistency and to maintain the high quality of Jaguar software, the following standards must
be adhered to by all developers: Please ensurc that you contact Jaguar Developer Support before
submitting code for Compatibility Coding if you have any questions regarding these guidelines.

Items shown in italics apply to titles published by Atari and must be adhered to by Atari-contracted
developers, in addition to the other standards.

1) The title screen must contain all necessary copyright information:

The phrase “Licensed to Atari Corp.” must follow the copyright information on games
licensed to Atari Corp.

. The phrase “Licensed by Atari Corp.” must appear following the title screen on third-
party Licensee titles. ’

° Programming credits may be included as desired, but they cannot replace or precede
copyright information.

d The title screen(s) must be the first visible screen(s).

2) The “0” button should be used on the title screcn 10 toggle game music oft and or; game sounds
are unaffected by “0”. The default condition of the music (upon boot-up or Restart) should be
on. If the “0” button is not used in the game, it should be used to toggle game music off and on
during all other game play screens as well.

If the music is toggled off by the “0” buiton, the music volume slider should go to “0” volume as
well. Alternately, the volume slider can remain fixed at the current volume and the message
“mute on” can be displayed.

3) The Restart function of simultaneously pressing the “#" and “*” buttons should reset you back to
the title screen. The order in which the buttons are pressed should not matter. Reset should
occur immediately.

4) When the Pause button is pressed, all game actions must immediately stop and the word
«pAUSED” must be displayed in the center of the screen. When the button is pressed again, all
game actions should immediately resume and the word “PAUSED?” should be erased from the
screen. The Pause indicator should be of such color and size that it is easily seen. It is helpful to
game magazines if pressing the 1 and 3 keypad keys while paused removes the pause message to
facilitate screen captures.

5) Pause and Restart should be allowed anytime during a game with the exception that Pause is not
necessary on the title screen.

© 1994 Atari Corp. Confidential Information 7P Property of Atari Corporation 26 April, 1995

Page 16 Appendix D - Jaguar Development Standards

6) We require a demo mode in all games showing some game action. This should be automatic
from the title screen after a brief time of no user action and can also be an option on the option
! screen. Without a demo mode, retailers are much less inclined to have your game in the
machine in their point-of-sale display.

7) Please ensure that any text you may display during the game can be read easily over all
backgrounds. Either a contrasting color scheme or an outline around the text is recommended.

1 8) The “Completion of Game” logic should work as follows: When the game ends, there will

] probably be a “Congratulations” screen, or a high score screen. No matter what screen is shown,
| you must construct the end of the game so that the user cannot bypass any “Congratulations” text
! or High Score screen accidentally. Make the program work such that a Restart is required to

' return to the title screen from the “Congratulations” screen, OR implement a timer which ignores
1 all input for a period of time (except timer wouldn’t restrict Restart) so that the user does not
miss any valuable information.

9) For normal “Game Over” screens, allow any fire button press to return you to the title screen.
10) For multi-player networked games, use the Modem/Networking developer guidelines.

11) We recommend that the high score screen displays the current version number on the title screen
during final testing. If there is no high score screen, the version number can be displayed in the
“Pause” screen. This version number must be removed prior to release of software.

The last digits of the top high score in the default high score table should be the version number
of the software.

12) Joystick port 1 is to be used for a one-player game. Joystick port 2 is to be used for the second
player in a two-player game. See the Enhanced Joystick/Multi-player Adapter documentation
tor further details.

13) The “B” button should be used as the primary action button; the “A” button should be used as
the secondary action button. The “C” button should be used as the third action button. if a
button is not used then it should be used as another “B” button. There must be an option to
allow users to reconfigure the default settings.

Buttons must be implemented this way.

14) When the game is paused, pressing the “A” button should bring up a visual indicator and allow

the user to adjust music volume via the joypad. Pressing the “B” button should bring up a visual
indicator and allow the user to adjust sound effects volume. The “C” button can optionally be
used to adjust a specific sound such as engines or voices. The indicator should be removed by
the same button that brought it up. The volume level information should be saved when the high
score or controller configuration information is written to the cartridge EEPROM.

The visual indicator used for adjusting music volume or sound effects volume should be a
] horizontal bar.

26 April, 1995 Confidential Information R Property of Atari Corporation © 1994 Atari Corp.

Appendix D - Jaguar Development Standards Page 17

4

15) The “Option” button should be used to take the user to the Option screen. There should be an
option to reconfigure the default joypad controls. This should also be saved to cartridge.

This option should be allowed during Pause also.

16) The stored information in the EEPROM should be cleared if the user simultaneously presses #,
* and Option at the title or options screens. A message “Cartridge Memory Cleared” should
then be displayed. -

17) The EEPROM data must be checksummed. If it is invalid or the EEPROM has timed out due to
wear or failure, the default settings should be used. The game must never hang due to EEPROM
fault.

18) We recommend using the keypad for passwords.
19) The NTSC and PAL versions of a game must both be in the same cartridge.

20) If a game has a save game feature, it must be allowed only when the game is paused. A message
“Game Saved” should be displayed below the paused message when the game save feature is
activated.

21) Anygameofa graphically violent nature must contain a parental lockout code. Default is
“Lockout On”. The code must be changeable by a parent following instructions in the game
manual. Under lockout no extreme violence is displayed. The code should be enterable only on
the option screen.

© 1994 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

Page 18 Appendix E - jaguar Software Experience Approved Manufacturer Production Guidelines

Publisher will send to Atari:

1. Code on either floppy (for cariridges) or CD master (for CD ROM). ROM image (.ROM file,
single contiguous file containing executing at $802000) on floppy must be ZIP'd and spanned
across floppies using PKZIP v2.G4 or greater.

2. Two sets of blank tloppies. EPROMSs (150ns or faster) or CD masters so we can return
compatibility coded version of title.

3. Completed Code Submission Form and atfidavit of Content Descriptor (see section 11 for
information on Content Descriptor).

4. Documentation of testing procedure and proof that the testing procedure has been adequately
satisfied.

5. Instructions to play submitted software.

Atari will:

i Review game 10 see if it adheres to the Jaguar Development Standards document guidelines (for
fire button use, etc.)

2. Perform a hardware compatibility verification.

If code is accepted for compatibility coding, Atari will compatibility code and return it to the
publisher.

If code is rejected or other problems are tound, an anomaly form will be faxed to the publisher.
The publisher then can correct the problem(s) and resubmit code. If they need to resubmit code
more than once, Atari will charge $250 per additional submission for re-review of the code and
compatibility coding.

Option 1
Please see Jaguar Product Style Guide for Atari recommended box design.

26 April, 1995 Confidential Information i, o .N Property of Atari Corporation © 1994 Atari Corp.

e

i

Appendix E - Jaguar Software Experience Approved Manufacturer Production Guidelines Page 19

; ‘ s Option 2
Publisher's custom designs are ailowed with prior Atari approval.
General guidelines:
The Jaguar logo must appear on the front of the box in dimensions no less than 2.5"w x 1"h. It
, may not be obstructed by other artwork. Other licensor logos (such as QSound, Cinepak, etc.)
* appear on the back of the box.

"Interactive Multimedia Cartridge" must appear across the bottom edge of the box front.

The Jaguar Compatibility Assurance Hologram (see section V) must be affixed to the front of
the box

Atari will not censor content; publishers should make themselves aware of local laws concerning
entertainment media content.

I e

% Atari does reserve the right to withhold the use of the Atari and/or Jaguar logos to protect the goodwill
of the Atari name and contradictory trademarks. The publisher must still properly use the Jaguar
Compatibility Assurance Hologram and must adhere to all stipulations set forth in the Third-Party
Licensing Agreement.

Upon submission of the Software Experience for compatibility coding and verification, the Licensee
must also submit an affidavit stating that the Content Descriptor does accurately retlect the content of

the Software.

EXAMPLE CONTENT DESCRIPTORS...

General Audience Material
Adult-Oriented Themes

(Graphic/Comical/Light) Violence
Adult Language

®
o
Adult/Sexual Situations e Partial Nudity
® Explicit Sexual Themes

Sexual Themes

Cartridges & CDs ("Product")

Option 1
Atari will handle all manufacturing, based on Licensee's ROM or CD-ROM master and
production-ready film. Atari will charge our cost, plus a 10% handling fee.

© 1994 Atari Corp. Confidential Information . o N Property of Atari Corporation 26 April, 1995

Page 20 Appendix E - Jaguar Software Experience Approved Manufacturer Production Guidelines

Option 2
Licensee can handle manufacturing themsclves. The tollowing services are available from
Atari-approved sources:

Cartridge Shells (cost: approximately $0.32 each)

Source: Stoesser Industries; Contact: Robert Stoesser; Phone 415-969-3252

Their supplied casings conform to Atari specifications. Publishers can order custom plastic colors, or
have their own logo appear in the molding of the cartridge simply by purchasing a low-cost insert from
Stoesser.

ROMs '

Sharp; Contact: Paul McCartney; Phone: 408-452-6409

Samsung; Contact: Lori Steinthal, I-Squared Mfgr. Rep.: Phone: 408-988-3400, x223
MX Macronix Inc.; Contact: Ray Mak; Phone: 408-453-8(838

Goldstar; Contact: Y. Kenneth Kim; Phone: 408-432-1331, x3603

Standard Cartridge PCB's
Atari will supply board layout information; Licensee must submit manufacturing samples to Atari for
approval. We will also be happy to provide direct sources for PCB's.

CD-ROM
WEA/Ivy Hill; Contact Atari for sales office for vour territory.

Cartridge Turnkey Service
Extron Manufacturing (contact: Thao Nguyen; phone 408-456-0180) has been designated as a fully
approved manutacturer under the provisions of the Jaguar Software License Agreement.

Publisher can create their own cart internal (PCB . etc.,) design, but it must be submitted, registered and
approved by Atari prior to manufacturing to ensure compatibility with future revisions of Jaguar. This
will accommodate Publishers wishing to create special carts with battery-backed up SRAM, etc. Some
of these alternative designs may already be available to Licensees; call for availability.

All ROM and CD-ROM duplication must be performed by the Atari-approved vendors. Publisher shall
have the right to have a ROM or CD-ROM duplicator qualify as a Manufacturer under this Agreement
upon proof of the following:

1. That ménufacturer 1s properly licensed by Philips/Sony for CD-ROM, if applicable;

2. That the manufacturer can maintain reasonable quality assurance standards.

.b)

That the manufacturer agrees to such reasonable security and reporting requirements to assure
that compliance with the royalty provisions of the Jaguar Software License Agreement are
implemented and verifiable by providing any information relating to production of Jaguar ROMs
or CD-ROMs when requested by Atari; and

4. That the manufacturer agrees to maintain Atari's intellectual property rights.

L A 75 e

26 April, 1995 Confidential Information . @ .\ Property of Atari Corporation © 1994 Atari Corp.

Appendix E - Jaguar Software Experience Approved Manufacturer Production Guidelines Page 21

Atari shall reasonably assist any manufacturer advanced by Licensee to become a manufacturer,
however under no circumstances shall Atari have liability for the conduct of the manufacturer. Atari
shall inspect the manufacturing facilities prior to approval. Please allow 60 days for the approval
process.

Jaguar compatibility assurance holograms (see next section) must be affixed to the front of the point of
sale box.

1. Jaguar Compatibility Assurance Holograms must be ordered from Atari via fax (1-408-745-
2088). Holograms are ordered on a by-title basis to track royalties via Atari-assigned serial
numbers.

2. Holograms are ordered in opening orders of a minimum 2000, reorders are in multiples of 1000.

Holograms are 12 cents ($0.12) each.

3. Holograms will be delivered generally within 3 working days.
4 Publisher will be billed for holograms and royalty at time of shipping, to be paid in accordance
] @ with the terms of your License Agreement.

© 1994 Atari Corp. Confidential Information 7K Property of Atari Corporation 26 April, 1995

Appendix F - Additional Documentation

Page 22

The following additional documents are also included with the Jaguar Developer's Kit or are

avauable separately:

DB: The Atari Debugger

)

26 April, 1995 Confidential Information ™ Property of Atari Corporation © 1994 Atari Corp. \

	Appendix A - Frequently Asked Questions About Jaguar
	About The Developer Package
	About Problems Running The Development Software Or System
	About Documentation Clarifications
	Programming Questions
	About Documentation Bugs And Additions
	About hardware features
	Wacky Questions We Removed From The Previous Sections

	Appendix B - Programming Guidelines
	General Guidelines
	Filename Extensions
	Basic Testing For Jaguar Programs
	Jaguar Programming Tips & General Procedures
	Ideas To Try

	Jaguar Atari-Based Development System Information
	General Guidelines

	Appendix D - Jaguar Development Standards
	Appendix E - Jaguar Software Experience (Approved Manufacturer Production Guidelines)
	I) Compatibility Coding And Content Verification
	II) Gift Box
	III) Content Descriptor
	IV) Manufacturing
	V) Compatibility Assurance Holograms And Royalty

	Appendix F - Additional Documentation

