Libraries Page 1

This section describes the various libraries that are included with the Jaguar development Kit.

Because Atari is constantly updating and improving the Jaguar libraries and sample code, it's possible
that there may be differences between the documentation and the most current release of a library.
Always check the library distribution archive for one or more text files with additional or replcement
documentation. '

The following libraries are included:

. Jaguar Startup Code

. 3D Graphics

. BPEG Image Compression & Decompression

. Cinepak Decompression & Playback (See separate Cinepak For Jaguar section)
. Networking (see Jaguar Voice Modem section)

. Music & Sound

. Jaguar Music Driver

. EEPROM Access Library

. NV-RAM Cartridge Access Library

See also the Sample Programs section.

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

«

Page 2 Libraries

Starting up a Jaguar (initializing video, the object list, etc...) is the most important thing a program must
do correctly. This startup code (STARTUP.S) performs all of the program initialization correctly and
must always be used. Note that modifying, reordering, or omitting any part of this startup, except
those portions explicitly marked as being changeable, will likely cause your software to fail our
hardware testing procedures.

Link STARTUP.S first to make it the first code to be executed. Do not perform any initialization of any
kind prior to running this startup code. When this code finishes it will jump to the label _star? to enter

your code.

Our startup performs the following steps:

1. Sets GPU and DSP Endian registers correctly.

o

Disables video refresh.

Sets the 68k stack pointer to the end of DRAM.

'b)

4. Initializes video registers.

5. Creates an object list as follows:
BRANCH Object (Branches to stop object if past display area)
BRANCH Object (Branches to stop object if prior to display area)

BITMAP Object (Jaguar License Acknowledgement - see below)
STOP Object

6. Installs an interrupt handler, configures VI, enables 68k video interrupts, lowers 68k IPL to allow
interrupts.

7. Uses GPU routine gSetOLP to stuff OLP with pointer to object list.
8. Turns on RGB video ($6C7 in VMODE).
9. Jumps to _start (your supplied code).

As soon as your code gains control you should perform whatever other initialization tasks your code
may need to allow the graphic to be on screen for a reasonable amount of time.

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 3

When you need to transfer control to your object list (for your title screen OT whatever else) you should
poll the variable wicks' for a change. At this point (vertical blank) you should switch interrupt handlers
(by placing a new value at LEVELO $100) and change the OLP. Remember, the OLP should only be
changed by the GPU (you can use our DRAM routine if the GPU isn't already running).

The macro license_logo definition at the top of STARTUP.S should be changed as necessary to indicate
either the “Licensed by” or “Licensed to” graphic respectively. The « icensed to” graphic should only
be used by our subcontractors doing a port of an existing game created by a company other than Atari.
The “Licensed by” graphic should be used in all other cases.

This collection of files should always be used as the baseline startup reference. For example, at the time
of this writing, many of our other sample programs have not yet been updated to reflect some of the
new things this startup does more correctly. They will be updated soon. However, whenever an update

needs to be made, this startup code will always be updated first.

5w
!

© 1995 Atari Corp. Confidential Information “Z Property of Atari Corporation 26 April, 1995

Page 4

Libraries

Please note that there is nothing preventing developers from using a different 3D modeling program to
create their 3D objects. However, you will have to provide your own object conversion utilities and/or

3D transformation and rendering functions.

The utility 3DS2JAG converts an object file created with AutoCAD 3-D Studio v2.0 or v3.0 into a
format that can be used with the Jaguar 3D graphics routines. For detailed information on this utility,

see the Tools chapter.

For a full description of the 3D-Studio object data format refer to the manual "3D Studio File ToolKit:
reference, publication 100672-A, December 18, 1992". As newer versions of 3D Studio are created,
3DS2JAG will have to be modified to reflect any new commands. The structure of the .3DS binary data
file can be found in Chapter 2, page 7, and the Data Structure Reference, page 35-47. The data in this
file is grouped into chunks, defined by a Command, Size, and Data block. See Chapter 3, pages 49-79.

Once the .3DS model has been completely parsed and assembled, the .JAG model created by the
conversion utility must be assembled and output. The following is a sample of output from 3DS2JAG

for a cube created in 3D Studio:

===

*
|
|

H

;*

i File: cube .JAG

;*

i Created From: cube.3ds

;*

;*

; FmsssssssoosssssSSSsSSSSSSSSSSSSsassSssssssssss *
.data
.phrase

SEGOFFSET EQU $4

.include *blit.inc"

P A== *
.globl data

.phrase

data:

26 April, 1995 Confidential Information "L Property of Atari Corporation © 1995 Atari Corp.

Libraries

), i“ﬂ dc.w 8 .+ number of Vertices

an. dc.w 12 ; * number of Faces
de.l .vertlist ;* pointer to vertices
dec.l .texlist ;* pointer to texture maps
de.l .tboxlist ;* pointer to texture boxes
; *==================== _____ PSS === ==%
i * FACE DATA - negative values signify reversing the segment vertext pair
- i:__.__.._____.__.._.__:: == —_—_—== = *

.facelist:
de.l SFFFF0000 . * Gouraud shaded. No texture.
de.w 3 ;* Face 0: Segments in Face
dc.w $008f .* color GREEN MATTE (GOURAUD)
dc.w 4 * 8
dc.w 6 * 8
dec.w 7 * 8
de.1 SFFFF0000 s+ Gouraud shaded. No texture.
dc.w 3 ;* Face 1: Segments in Face
dc.w $008f . color GREEN MATTE (GOURAUD)
dc.w 4 * 8
dc.w 5 * 8
dc.w 6 * 8
de.l SFFFFO0000 . * Gouraud shaded. No texture.
dc.w 3 ; * Face 2: Segments in Face
dc.w S$00f9 ;* color ORANGE MATTE (GOURAUD)
w de.w 0 * 8

dc.w 5 * 8
dc.w 4 * 8
de.l SFFFF0000 ;* Gouraud shaded. No texture.
dc.w 3 ;* Face 3; Segments in Face
dc.w S00£f9 ;* color ORANGE MATTE (GOURAUD }
dc.w 0 * 8
dc.w 1 * 8
dc.w 5 * 8
dec.1 SFFFF0000 ;* Gouraud shaded. No texture.
dec.w 3 ; * Face 4: Segments in Face
dc.w $0089 ;* color GRRY MATTE (GOURAUD)
dc.w 1 * 8
dc.w 6 * 8
dc.w 5 * 8
de.1 SFFFFO0000 ;* Gouraud shaded. No texture.
dc.w 3 ;* Face 5: Segments in Face
dc.w $0089 ;* color GRAY MATTE (GOURAUD)
dc.w 1 * B
dc.w 2 * 8
dc.w 6 * 8B
de.l SFFFFO000O ;* Gouraud shaded. No texture.
dc.w 3 ; * Face 6: Segments in Face
dc.w SO00fl ;* color RED MATTE (GOURAUD)
dc.w 3 * 8

gy dc.w 4 * 8

\ dc.w 7 * 8
de.l SFFFF0000 :* Gouraud shaded. No texture.
dc.w 3 ;* Face 7: Segments in Face
dc.w S$O00f1l ;* color RED MATTE (GOURAUD)

© 1995 Atari Corp. Confidential Information 7R Property of Atari Corporation 26 April, 1995

«

E i’
i
i1

Page 6 Libraries
de.w 3 * 8
dec.w 0 * 8
dc.w 4 * 8
dc.l SFFFF0000 ; * Gouraud shaded. No texture.
dc.w 3 ;* Face 8: Segments in Face
dec.w S$OOff ;* color YELLOW MATTE (GOURAUD)
dc.w 2 * 8
dc.w 7 * 8
dc.w 6 * 8
dc.l SFFFF0000 ;* Gouraud shaded. No texture.
dc.w 3 ; * Face 9: Segments in Face
dc.w SO00ff ;* color YELLOW MATTE (GOURAUD)
dc.w 2 * 8
dc.w 3 * 8
dc.w 7 * 8
dc.l SFFFF0000 ; * Gouraud shaded. No texture.
dc.w 3 ;* Face 10: Segments in Face
dc.w $0001 ;* color BLUE MATTE (GOURAUD)
dc.w 0 * &
dc.w 2 * 8
dc.w 1 * 8
dc.l SFFFF0000 ; * Gouraud shaded. No texture.
dec.w 3 ;* Face 1l: Segments in Face
dec.w $0001 ;* color BLUE MATTE (GOURAUD)
dc.w 0 * 8
dc.w 3 * 8
de.w 2 * 8
; ¥*===sse=ssooooosss=ssss=s===ss =%
;¥ VERTEX DATA

.vertlist:

;* vertex: N
dc.l SFFCF0031 ;* X 1y (16.0,16.0) (—49,49)
dc.l $FFCFDBOD ;* 2 |Nx (16.0,0.16) (-49)
dc.l $24F3DBOD ;* Ny|Nz (0.16,0.16)

;* vertex:
dc.l $00310031 ;* X |Y (16.0,16.0) (49,49)
dc.l SFFCF24F3 ;* 2 |Nx (16.0,0.16) (-49)
dc.l $24F3DBOD ;* NyiNz (0.16,0.16)

;* vertex:
dc.l SOO031FFCE ;* X 1Y (16.0,16.0) (49,-50)
dc.l SFFCF24F3 ;* 2 |Nx (16.0,0.16) (-49)
dc.l S$DBODDBOD ;* Ny|Nz (0.16,0.16)

;* vertex:
dc.l SFFCFFFCE ;* X |Y (16.0,16.0) (-49,-50)
dc.l S$FFCFDBOD :* 2 |Nx (16.0,0.16) (-49)
dc.l $DBODDBOD ;* Ny|Nz (0.16,0.16)

;* vertex:
dc.l SFFCF0031 ;* X |Y (16.0,16.0) (~-49,49)
dc.l1 $0032DBOD ;* 2 |Nx (16.0,0.16) (50)

26 April, 1995 Confidential Information “7®R Property of Atari Corporation © 1995 Atari Corp.

Libraries _ Page 7

dc.1 $24F324F3 ;* Ny|Nz (0.16,0.16)

;* vertex: 5

dc.l $00310031 ;* X |Y (16.0,1€.0) (49,49)
de.l $003224F3 ;* 2 |Nx (16.0,0.16) (50)
dc.l $24F324F3 ;* Nyl|Nz (0.16,0.16)

;* vertex: 6

dc.l1 SO031FFCE ;* X 1y (16.0,16.0) {49,-50)
dc.l $003224F3 ;* % INx (1€.0,0.16) (50)
dc.l SDBOD24F3 .* Ny!Nz (0.16,0.16)

;* vertex: 7

dc.l SFFCFFFCE ;* X |y (16.0,16.0) (-49,-50) B
dc.1l $0032DBOD ;* 2 |Nx (16.0,0.16) (50)
dc.l $DBOD24F3 ;* Ny|Nz (0.16,0.16)

;* Model Size = (232 0xe8)} bytes

.texlist:

.tboxlist:

b See the sources for the 3D Demo program for further detail.

At this time, the only documentation for the 3D transformation & display routines is contained within
the comments of the actual source code itself. Please examine the 3D demo program source code for
more information.

The 3D demo program demonstrates the use of the 3D object transformation & rendering routines. It
shows a detailed, texture-mapped spaceship and lets you move it around using the joypad. See the more
detailed description in the Sample Programs section.

© 1995 Atari Corp. Confidential Information “AR Property of Atari Corporation 26 April, 1995

et S

Page 8 Libraries

BPEG is a version of JPEG! for the Jaguar. The BPEG utility and library are provided to allow you to
compress bitmapped RGB graphics to a small fraction of their original size, so that they use minimal
space in your Jaguar programs.

! JPEG is a "lossy" compression scheme, meaning that the after being compressed and then

; decompressed, the picture will not be exactly identical to the original. You can fine tune the

1 compression quality as needed 1o strike the most acceptible balance between image quality and
compression ratio.

Note: BPEG is primarily designed for RGB-mode graphics, and the compression utility takes RGB-

mode graphics files as input. However, the BPEG decompression library is capable of converting the
images to CRY-mode on the fly when they are decompressed (at the cost of longer decompression
times).

i Note: The BPEG package replaces the JAGPEG package previously included with the Jaguar
Developer’s kit. The BPEG utility is easier to use, and the decompression library is faster and includes
complete source code so that you can make any modifications required by your specific application.

3 The first thing you have to do is have a compressed image. Atari provides a tool in the Jaguar
developer's kit that allows you to compress Targa-format? picture files into BPEG format. See the
3 Tools chapter for information about this utility.

- Using the compression tools is quite simple. Included in the BPEG package is a sample program that

! displays two compressed pictures on the Jaguar screen. Normally, compressing the images is taken care
b of automatically by the MAKEFILE used by the sample program, but let’s do it manually so that you
are familiar with the process.

! 1) Move to the JAGUAR\BPEG directory. The sample pictures FISH.TGA and PATRICK.TGA
provided are located in this directory.

; 1 JPEG stands for Joint Photographic Experts Group. A JPEG picture is one that has been compressed using the JPEG

g‘ lossy file compression scheme.

2 Targa is a popular image file format for 16-bit and 24-bit RGB true color graphics. If your graphics programs do not

§ support the Targa file format, then you should investigate one of the various file format conversion utilities. HiJack Pro
| for Windows is available at computer stores everywhere, and the shareware program Paint Shop Pro (for MS-Windows)
! is available online.

1 26 April, 1995 Confidential Information ™) Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 9

2) Type in the command:

cbpeg -quality 25 fish.tga fish.bpg

We are compressing the file FISH.TGA to get the file FISH.BPG, using 2 quality setting of 25.
The compression process will normally take just a few seconds, but of course this will vary
depending on the size of the image, the quality percentage selected, and the speed of your
computer.

3) Now you should have a file named FISH.BPG which is 9112 bytes, that's less than 5% the size
of the original FISH.TGA file!

4) Now type in the command:
cbpeg -quality 75 patrick.tga patrick.bpg
Now we are compressing the file PATRICK.TGA to PATRICK.BPG using a quality setting of
75. This should result in a file that is 6864 bytes long (less than 4% of the original file size).

Note that this picture compressed 10 a smaller size than FISH.TGA even though we are using a
higher quality setting.

Later we will examine the sample program that displays these pictures on the Jaguar.

The BPEG.S file contains the source for the BPEG decompression routines. This file contains several
flags which customize the operation of BPEG. While these flags are meant to be used at assembly time,
you may wish to modify the code so that they may be set at runtime. The source is provided so that this
sort of program-specific modification can be made.

The flags CRY15, CRY16, RGB15, RGB16, RGB32 defined at the top of BPEG.S control the output
mode of the decompressor. One, and only one, of these flags must be set to TRUE (non-zero) and the
others set to FALSE (zero).

The BPEG functions are accessed via two 68000-based routines which call the GPU-based
decompression code with the proper parameters. The decoding steps are:

1) Call BPEGInit (no input or output parameters).
2) Call BPEGDecode

Input:
AO.1 is the BPEG stream pointer
Al.lis the output buffer address
DO.1 is the output buffer line width (in bytes)

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

Page 10 Libraries

Output:
DO = 0 (no problem)/ 1 (bad format)

3) Test BPEGStatus (long). Possible values are:
-1 (decoding)
0 (finished)

2 (decoding aborted, Huffman error)

If you want to decode another image, just go to step 2.

BPEG]nit copies the GPU code in the GPU RAM, without using the blitter. You can change this if the
bliiter is not used at this moment.

BPEGDecode sets some variables in the GPU, and run it. The GPU uses (corrupts) ALL REGISTERS
FROM BOTH BANKS, and almost all GPU memory (the exact amount of memory used depends on the
chosen output mode).

If you require that some GPU registers be left alone (like for interrupt processing), then you will have to
edit the BPEG.S source file so that it leaves a few registers free. However, recognize that this will
result in slower decode times.

Note: If you're decoding an image in CRY15/CRY16 modes, you must have the 32Kb RGB->CRY
conversion table, and declare the GLOBAL symbol CRYTable, at the start of the table. This table is
included in the file RGB2CRY.S.

Tip: Don't forget that cartridge access is slower than RAM access. It's a good idea to copy some of the
BPEG tables into RAM before running the decoder, for ultimate speed.

TESTBPEG is a sample program that demonstrates how to take the files created with the BPEG tool
and use them. This sample program is similar to many of the other sample programs for the most part,
except that it sets up the video a bit differently with a 16-bit RGB mode instead of 16-bit CRY, and a
creates a 16-bit RGB bitmap object instead of an 8-bit palette-based object. This is, of course, to
accomodate the JPEG pictures which the program displays.

Do not use this sample program as a demonstration of anything other than how to use the BPEG library.

The interesting parts of this are in the TEST.S file, which sets up and calls the BPEG routines to y
decompress the pictures. It switches back and forth between two different pictures which were 4
compressed with different quality settings. One of the pictures is 75% quality, the other is set to only

25% but still manages to look reasonably decent.

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1995 Atari Corp.

Libraries

Page 11

Below are so

First we must declare the extern
added in at link time.

.extern BPEGInit
.extern BRPEGDecode
.extern BPEGStatus

~e we

.extern fish_Jjpg
.extern pat_Jjpg

7
.
7

to finish decoding, and then go onto

for errors returned by
bsr BPEGInit

.show_fish:

e lea fish jpg,a0l
!g lea bitmap_addr,al
move.l #((WIDTH*DEPTH)/8) ,a0
bsr BPEGDecode
.wait_£fish:
tst.l BPEGStatus
bmi.s .wait_fish
lea pat_jpg,a0l
lea bitmap_addr,al
move.l #((WIDTH*DEPTH)/8),d0
bsr BPEGDecode
.wait_patrick:
tst.l BPEGStatus
bmi.s .wait_patrick
bra .show_fish

Note that the pictures are

the ALN linker to get around the 128
testbpeg.Ink" option specifies that the
turn contains addition

me annotated excerpts from the TEST.S fil

al references to the pictures and decomp

Here's the code to actually call the BP

e of the TESTBPEG sample program.

ression code that will be

Copy over GPU code into GPU RAM
Execute decode routines
semaphore for vfinished decoding” status

1

-

picture #
picture #2

EG routine to decompress and display one image, wait for it

the next image. Note that this simple example does not check

the BPEGDecode function.

; copy over GPU code

address of compressed picture data
Get destination address
Width of destination bitmap,
Decode image

in bytes

EYR Y TR 1

wait for decompression to finish
before continuing...

~e

Address of compressed picture data
Get destination address
Wwidth of destination bitmap,
Decode image

in bytes

. we e W

wait for decompression to finish
pefore continuing...

ne e

Loop forever through both pictures

1

switched back and forth as quickly as the decompression code can spit them
out. Also take a look at the MAKEFILE, which shows how you can specify a command input file for
-byte MSDOS commandline

length limitation. The "-C
linker should read input from the file TESTJ PG.LNK, which in

al commands for the linker.

© 1995 Atari Corp. Confidential Information 7R Property of Atari Corporation

26 April, 1995

Page 12 Libraries
From the MAKEFILE for TESTBPEG:

testjpg.abs: $(OBJ) dehuff.dat
aln S$(ALNFLAGS) ${OBJ) -c testjpg.lnk

The contents of the TESTJPG.LNK file shows how the .JAG picture files are included in the program,
as well as the DEJAG routine's .BIN file and .DAT files.

Contents of the TESTJPG.LNK file:

-i fish.bpg fish_ jpg
-i patrick.bpg pat_jpg

The "-i" option tells ALN to include the file specified by the next parameter, and to create a label at that
address as specified by the next parameter after that. Therefore, the first line of this file tells ALN to
include the file FISH.BPG (the BPEG-compressed version of FISH.TGA) and to create a label
"fish_jpg" at the address where the data from this file ends up in the resulting file. Then our test
program refers to " fish_jpg " when it decompresses the picture (as shown in the sample code above).

26 April, 1995 Confidential Information " o .8 Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 13

back libraries, related sample programs, and utilities are

The Cinepak Video Decompression & Play
he chapter Cinepak For Jaguar for more information.

discussed in a separate chapter. Please seet

Atari Jaguar. The first type is 2 local
m or building connected via the

s similar to a computer LAN setup. The second type of network is two
h other over the telephone lines via the Jaguar modem.

There are two basic types of networking that can be used with the
area network (LAN) with muitiple Jaguar consoles in the same roo
asynchronous serial port. This i
Jaguar consoles connected to eac

At this time, the specifications for LAN-style networking is still in development within Atari. The
specification for The Jaguar Voice Modem is given in its own section..

26 April, 1995

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation

|
' Page 14 Libraries

‘ Sound in Jaguar is produced by the requires a synthesizer program running in the Digital Signal
Processor (DSP) in Jerry. This document describes the lowest ievel interface to one such program,

FULSYN, aka “the Jaguar Synth”.

The Jaguar Synth is voice table driven. The main loop checks a voice table to see which voices are
" turned on, and then it calls the appropriate module for each active voice. There are twelve synthesis

¥ modules:

- ® 6 Sampler modules. (] 3 FM Modules.

1 o 1 Wave Table module. ® 2 Envelope-based Waveform modules
|

i

.!;

All of the modules can be placed at a stereo pan location.

The Sampler modules allow either 8-bit or 16-bit signed sample data, as well as a special compressed

:% format where 16-bit data has been compressed 2:13. This compression is slightly lossy. All Samplers use
data that is not in Jerry's internal RAM. All samplers also support pitch shifting. The Samplers have the
il ability to loop within the sample so that long sustains may be achieved without using too much memory. "

The parameters for the Sampler modules are:

:; o Pitch L Loop flag/Volume
® Pointer to sample data ® End of [oop
® Size of loop ° Pan value

® Envelope Information (optional)

The FM modules are simple to understand but produce a wide variety of sounds. In simple terms, an FM
‘, synthesizer takes a 128 sample waveform where each sample consists of a 16 bit signed integer sign
i extended to a 32 bit long. The synth then modulates the frequency according to another waveform (built

like the first). The simple FM parameters are:

?\ ® Pitch ® Volume

; L Pointer to Sample Waveform L Pointer to Modulating Waveform
* ® Frequency of modulation] Depth of modulation

?J3 ® Pan Value

‘r 3 This compression is done by the SNDCOMP utility.

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1995 Atari Corp.

—

Libraries Page 15
Q’ ”w The complex FM module adds:

® Pointer to Modulator of Modulation L Frequency of modulation of frequency

® Depth of modulation of frequency ® Frequency of modulation of depth

o Depth of modulation of depth

All envelope handling is done outside of the DSP by adjusting the volume of each voice.

The wavetable synth uses a conceptually complex synthesis technique that offers a very wide degree of
flexibility of sound with a modest computational overhead. The wavetable synth plays a set of
instructions. An instruction defines a waveform, a time, a volume change, a fade time and a next
instruction. The waveforms consist of 128 samples. Each sample is a 16 bit signed integer sign
extended to a long. The waveforms are 512 bytes long and must start on a 512 byte boundary. The
instructions may loop to form a sustain. Much of the flexibility of the wavetable synth is derived from
the fact that as the synth switches from one instruction to the next, the output waveform is the linear
interpolation between the waveforms in the two instructions.

The parameters for the wave table synth are:

& Mm L Pitch ® Release Flag
® Volume ® Pointer to First Instruction
L Pointer to Release Instruction] Sample Length (2N size)
o Pan Value

The Instructions contain:

o Pointer to Sample ® Number of Ticks to Play the Sample
o Number of Ticks to Fade to Next Sample ® Amplitude Fade
® Pointer to Next Instruction

The wavetable amplitude fade control acts like a built-in envelope.

The Waveform module allows any 128 sample waveform (as defined for the wavetable synth) to be
played to the DACs at any musical pitch. The volume of this is then modulated by what may be thought
of as a very slow sample as an envelope. This envelope has the ability to loop so that long sustains may
be achieved without using too much memory. The parameters for the waveform module are:

L Pointer to Waveform o Pointer to Envelope
® Pitch ¢ Loop flag
w @ e Volume o Envelope rate
o End of loop o Size of loop
® Pan value
1 © 1995 Atari Corp. Confidential Information . 2 ¥ Property of Atari Corporation 26 April, 1995

Page 16 Libraries

A second version of the waveform module exists. It uses a slope-destination, time envelope. The
amplitude information is about the current point and the time is the amount of time it takes to get from
the previous point's amplitude to this point's amplitude. The sustain point for this envelope is the second
to the last point. The parameters for this version of the waveform module are:

o Pointer to Waveform o Pointer to Envelope

L] Pitch e Loop flag - loops at the sustain point
® Volume ® Release slope

® Pan value

There are also two versions of the sampler module which use this slope-destination envelope. Oneisa
16 bit sampler and the other one is a compressed 16 bit sampler.

The last FM module, called the FM/Env synth, combines the Simple FM wave generation with the
Waveform synth envelope generation.

To use the synth follow these steps:

1) Load the synth code into the DSP.
2) Initialize some locations in DSP RAM.

3) Initialize the DAC and start the DSP.

4) Set up a "Voice Table".

5) Start the voice.

6) Turn off voices as required

7) Repeat from (4).

Voice Tables are stored in DSP RAM.

The DSP code, and all its internal variables, are in the bottom of DSP RAM. This allows
TABLESTART (the start of the Voice Tables) to be quite low in DSP RAM (TABLESTART is a
define, use it as the position may change). The size of the table at TABLESTART is not defined in the
synth itself, it is determined by the programmer at run time (see table below). The remainder of DSP
RAM should be used to store the following, (a) Custom samples for both wavetable and FM synthesis,
(b) Voice Tables, these must be contiguous with TABLESTART, (c) Wave Table instructions and (d)
Waveform envelopes. Other uses for DSP RAM may arise as new synthesis modules are written. Each
Voice Table starts with a long (32 bit) value that indicates if the voice is active or not. The legal values
are:

Value Voice Type Value Voice Type
0 End of active voices 24 Waveform/Envelope
-4 Skip this voice 28 8-bit Sampler
4 FM/Env 32 Compressed Data Sampler
8 Simple FM 36 | Waveform/Slope-Destination Envelope

26 April, 1995 Confidential Information “7R Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 17
alue olce pe

""' O e e
40 16-bit Sample/Slope Destination Envelope
44 Compressed 16-bit Sample/Slope

i
5
|

2 |
|

12 16-bit Sampler |

j

Destination Envelope i

i
|
i
i

16 Complex FM

28 | Sound Effects Sampler Module
(uses 16-bit compressed samples)

20 2N wavetable

The values in the rest of the Voice table are given in the following pages. In the tables that follow, the {
symbol # means this value may be changed while the note is active. Values not specified do not need to \
be set. The end of the Table list is indicated by a 0 where the next table would start. l

1

When doing polyphonic synthesis (more than one note at a time), the volume of each voice must be
reduced to avoid overflow. For example a single loud voice would have a volume of about $6000.

Adding 3 of these would overflow 16 bits. To avoid this you must scale down the volume of each voice]
such that the total fits into 16 bits. In the preceding example a reduction of about 3 would work. ‘i
accompanying spreadsheet. Find the note that you want the 1

The values to use for pitch are given in the
he column marked (64K) for the 1

value for. The values for the FM synths and the wavetable synth are int l
other modules the value to use is in the column (256). i
|
{
;

The synth has a certain amount of time available to synthesize each sample, during that time it can do
only so much. The total time available is 168 time units (these are not clock ticks). The following isa

list of the approximate number of time units used by each synth module:

Simple FM ~15 time units
Complex FM ~24 time units : “
FM/Env ~23 time units i
Samplers ~19 time units |
Wave Table ~18 time units {l
Waveform synth ~19 time units ‘
Waveform with slope-destination envelope ~17 time units

Sampler with slope-destination envelope ~23 time units

Skip a voice ~3 time units
These numbers may change as the synth modules are modified and optimized. The timings above
assume that all table and sample data are in internal DSP memory (except for sample used by the
Sampler module). The numbers given for the Sampler modules assume that the main bus is not busy
doing other things. The total number of time units used can be computed from these numbers and kept
below 167. The number available can be read from a location in DSP RAM called TIMELEFT.

B e

g

B

Note: The 168 time units will reduce if oversampling is added to the synth. _!,

) The above timings assume that the synth is running at the default rate of ~20kHz. This can be changed
P by modifying the value stored in SCLK. If this is done then all of the pitch information will need to be

modified. ‘

© 1995 Atari Corp. Confidential Information “7PR. Property of Atari Corporation 26 April, 1995

i
|

Page 18

Libraries

Offset
(longs)

DOONOMHW

Simple FM

Description

Voice type (8)

Pointer to Carrier Wave. Must be on a long (32 bit) boundary (should be DSP memory for speed). ¥
Pointer to Modulating Wave. Must be on a long (32 bit) boundary (should be DSP memory for
speed). *

Reset to zero.

Pitch. Given as the size of a step in samples as a 15.16 number. ¥

Reset to zero.

Volume of this voice, 15 bits. &

Reset to zero.

Frequency of Modulation. Given as the size of a step in samples as a 15.16 number. =
Depth of modulation. This is a 7.8 number. =

Pan Value. 0 is full right, $3FFF is balanced, $7FFF is full left.

Complex FM

Description

0 Voice type (16)
1 Pointer to Carrier Wave. Must be on a long (32 bit) boundary in internal DSP memory. ¥
2 Pointer to Modulating Wave. Must be on a long (32 bit) boundary in internal DSP memory. &
3 Reset to zero.
4 Pitch. Given as the size of a step in samples as a 15.16 number. %
5 Reset to zero.
6 Volume of this voice, 15 bits.
7 Reset to zero.
8 Frequency of Modulation. Given as the size of a step in samples as a 15.16 number. =
9 Depth of modulation. This is a 7.8 number. =
10-12 | Reset to zero.
13 Frequency of modulation of frequency. Given as the size of a step in samples as a 15.16 number, &
14 Depth of modulation of frequency. This is a 7.8 number. &
15 Reset to zero.
16 Frequency of modulation of depth. Given as the size of a step in samples as a 15.16 number. &
17 Depth of modulation of depth. As a 7.8 number. *
19 Pan Value. 0 is full right, $3FFF is balanced, $7FFF is full left.

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1995 Atari Corp.

ong De PO

0 Voice type (12 = 16 bit; 28 =8 bit; 32 = compressed 16 bit)

1 High bit is the loop flag. The low 15 bits are the volume. ¥

2 Pointer to Sample. Must beon a word (sample size) boundary outside of internal DSP memory.
3

4

Pitch. Given as the size of a step in samples as a 23.8 number. *

End of loop in samples as a 23.8 number. For a non-looping sample this is the sample number at
end of the sample. When the current pointer passes this point the Voice type is set to -4. Fora
looped sample this is end point of the loop. This is given in samples as an integer with no fractional

part. =
5 Loop length in samples. This is a 23.8 number. =
6 . | Resetto zero.

19 Pan Value. 0 is full right, $3FFF is balanced, $7FFF is full left. =

Samples can be looped. (Note that this is a separate issue from looping in a music score.) Sample
looping works like this. Assume a sample in memory. There are four points of interest.

o The start of the sample.
L The beginning of the loop.
® The end of the loop.
: ® The end of the sampie.
Q g‘m To play a looped sample:
o Turn on the loop flag.

® Set the End Loop to the end of the loop. (In samples)
e Set the loop length (in samples) so that (Loop End - Loop length) = (beginning of the loop).

This will play the sample until it reaches the loop point, at which point it will loop backwards by loop
length samples. Looping will occur continuously until you stop it. To stop looping, set the End loop
value to the end of the sample (in samples) and clear the loop flag. At the end of a sample the voice type
is set to -4 by the synth. This allows the voice to be skipped. The voice may be reused at this point.

© 1995 Atari Corp. Confidential Information ‘7P Property of Atari Corporation 26 April, 1995

Page 20 Libraries

2N Wave Table

Offset
(longs) Description
0 Voice type (20)
1 Volume of this voice as a 15 bit number. This is the maximum volume reached by the voice. &
2 The high bit is the release flag. The remaining bits are the pitch as the size of a step in samples as a
23.8 number. =
; 34 Reset to zero.
i 5 Pointer to release instruction. May be anywhere in memory on a long (32 bit) boundary. For

\ performance reasons it should be in DSP RAM.
‘ 6 Reset to zero.
i 7

‘ . N1
. Size of wavetable sample. This 23.8 number is 2

i 8-9 Reset to Zero.

10 Pointer to the first instruction. May be anywhere in memory on a long (32 bit) boundary. For

1 performance reasons it should be in DSP RAM. At the end of the release sequence this is set to -1.
19 Pan Value. 0 is full right, $3FFF is balanced, $7FFF is full left. &

After the release sequence completes, the pointer at offset 10 is set to -1 to indicate that the voice may

be reused.
Waveform
Offset
(longs) Description

0 Voice type (24)

1 Pointer to Waveform. Must be on 512 byte boundary. For performance it should be in internal DSP
memory ¥

2 Pointer to Simple Envelope (see separate definition). Must be on a long (32 bit) boundary. For
performance it should be in internal DSP memory.

3 Reset to zero.

4 Pitch given as the step size, in samples as a 15.16 number. %

5 Reset to zero.

6 Loop fiag is the high bit, the rest is the overall volume as a 15 number. *

7 Envelope rate, given as the step size, in samples as a 15.16 number. %

8 End of loop in samples as a 15.16 number. For a non-looping sample this is the sample number at
end of the sample. When the current pointer passes this point the Voice type is set to -4. For a
looped sample this is end point of the loop. This is given in samples as an integer with no fractional
part. ¥

9 Loop length in samples. This is a 15.16 number. *

19 Pan Value. 0 is full right, $3FFF is balanced, $7FFF is full left. &

; Note: See the discussion on looping for the Sampler module.

T

d 26 April, 1995 Confidential Information 1, o N Property of Atari Corporation © 1995 Atari Corp.

Libraries

Page 21

Offset
(longs)

FM Envelope

Description

0 Voice type (4)

1 Pointer to Carrier Wave. Must be on a long (32 bit) boundary (should be DSP memory for
performance). &

2 Pointer to Modulating Wave. Must be on a long (32 bit) boundary (should be DSP memory for
performance). &

3 Reset to zero.

4 Pitch. Given as the size of a step in samples as a 15.16 number. %

5 Reset to zero.

6 High bit is the loop flag. the low 15 bits are the volume. *

7 Reset to zero.

8 Frequency of Modulation. Given as the size of a step in samples as a 15.16 number. ¥

9 Depth of modulation. This is a 7.8 number. &

10 Pointer to Simple Envelope (see separate definition). Must be on a long (32 bit) boundary (should be
DSP memory for best performance). =

11 Envelope rate given as the size of a step in samples as a 15.16 form, &

12 End of loop in samples as a 15.16 number. %

13 Loop Length in samples as a 15.16 bit number. %

14 Reset to zero.

19 Pan Value. 0 is full right, $3FFF is balanced, $7FFF is full left. *

Note: See the information on looping for the Sampler module.

avero ope-be atio elope
O o
ong De piio

0 Voice type (36)

1 Pointer to Waveform. Must be on 512 byte boundary. For performance it should be in internal DSP
memory '

2 Release Slope. This is a 16.16 number.

3 Reset to zero.

4 Pitch given as the size of a step in samples as a 23.8 number.

5 Pointer to Slope-Destination envelope (see separate definition). Must be on a long (32-bit)
boundary. For best performance in should be in internal DSP memory.

6 High bit is the loop flag. The low 15 bits are the volume. %

7 Current value. Resetto 1.

8 Current slope. Resetto 1

9 Current Destination. Resetto 1

19 Pan Value. 0 is full right, $3FFF is balanced, $7FFF is full left. &

© 1995 Atari Corp. Confidential Information ‘7P Property of Atari Corporation 26 April, 1995

i
f;‘fi
!
|

Page 22 Libraries

Sampler With Envelope P
Offset |
(longs) Description
Voice type (40 = 16 bit, 44 = compressed 16 bit)
High bit is the loop flag. The low 15 bits are the volume.
Pointer to sample. Must be on a long (32-bit) boundary outside of internal DSP memory.
Pitch given as the size of a step in samples as a 23.8 number.
End of loop in samples as a 23.8 number.
Loop length in samples. This is a 23.8 number.
Reset to zero.
End of Sample. This is a 23.8 number.
Pointer to Slope-Destination Envelope (see separate definition). Must be on a long (32-bit) boundary
(should be DSP memory for best performance). =
10 Release Slope. This is a 16.16 number.

ole|lo|v]|s|WIN]|=]|O

11 Current Value. Resetto 1.
12 Current Slope. Resetto 1.
13 Current Destination. Resetto 1.

19 Pan Value. 0 is full right, $3FFF is balanced, $7FFF is full left. %

Note: See the information on looping for the Sampler module.

Sound Effects Sampler

Offset
(longs) Description ‘&.
0 Voice type (48 = compressed 16 bit)
1 High bit is the loop flag. The low 15 bits are the volume. *
2 Pointer to Sample. Must be on a word (sample size) boundary outside of internal DSP memory.
3 Pitch. Given as the size of a step in samples as a 23.8 number. only multiples of $1000 will sound
exact, other pitches might add noise ¥
6 Reset to zero.
8 End of Sample. This is a 23.8 number.
19 Pan Value. 0 is full right, $3FFF is balanced, $7FFF is full left.
This is a one-shot, non-looping, non-interpolated sampler module. The sample will only sound exact
when played at its original pitch. The advantage of this module is that it is very fast, using only 12 to
13 time units. It is ideal for one-shot samples like sound effects or percussion instruments.
|
|
)
o

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1995 Atari Corp.

Libraries

Wave Table Instructions
Offset
(longs) Description
Pointer to sample to be played. Must be on a 512 byte boundary. For performance should be it
should be in internal DSP memory.
Unused.
Time. Length of time, in ticks to play this sample.
Fade value. This value sets the amplitude change per tick of fade. A becomes A*n, wherenis a
scaled 15 bit number. n = $4000 is no change, n = $2000 is divide volume by two, etc.

Fade length. The length of the fade given as N where the fade lasts 2() ticks.

2 <=N <= 14.

Pointer to next instruction. May be anywhere in memory on a fong (32 bit) boundary. For
performance reasons it should be in DSP RAM. This should be set to -1 to indicate the end of the
voice.

L IR E I B R N Bl R

Slope-Destination Envelope
Offset
(longs) Description
Must be set to 0x00010000
Must be set to 0x00000001
Slope value, in 15.15 format
Destination value, in 15.15 format
Slope value, in 15.15 format
Destination value, in 15.15 format
Siope value, in 15.15 format
Destination value, in 15.15 format
Must be set to 0x00000000
Must be set to 0x00020000

ololNjojrnislw|d]=]O

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

Page 24 Libraries

The Jaguar Music driver is an extension to the sound system described in the section The Jaguar Synth.
It is assumed that the reader is familiar with that section. In either case, the code is the same, FULSYN.
The only difference is that one of Jerry's timers is used to run a real time interpreter of preparsed MIDI
data. This is then used to automatically turn the first n voices on and off. This requires the voicetable to
be at least n entries in length. The number of voices used is set in the file PARSE.CNF. For simplicity,
this document will assume that n = 8. The sample rate of the underlying synth is assumed to be the
default ~20kHz. If this is changed then a new copy of NOTES.CNF must be generated.

The system is used as follows:

1) A MIDI file is created in file O format with no more than 8 note polyphony. This file is
converted to a simplified format by the program PARSE, just type 'parse filename.mid'
on the commandline?®. It creates a MADMAC assembly source code file containing data
statements representing the MIDI score information. The default output filename is TEST.OUT.

When PARSE runs, it also produces a description of the file to standard output (this can
optionally be disabled). This should usually be redirected to a file. If one exists in the current
directory, PARSE also reads a file named PARSE.CNF. This file is used to create patch maps.
The default mapping is for all channels to map to the patch at their channel number (see the
provided PARSE.CNF file for the format).

Looping in the MIDI file is supported using the following controller events: Controller 12 marks
Joop targets, the value on controller 12 is the target number; Controller 13 selects a loop target
and should be followed immediately by a Controller 14 event that gives the number of times to
loop. A negative loop count causes it to loop forever. A comment is inserted into the output file
that can be made into a label so that loop counts can be reset to loop more than 127 times. For
more information see the format of the music events at the end of this document.

2) A set of patches and envelopes are created using the format described in The Jaguar Synth for
voicetable entries, with a few differences.

a) In all of the FM modulation frequency controls, the rate may be made proportional to the
pitch of the note or left absolute. This is controlled by the high order bit of the frequency. The
relative frequency is a 23:8 integer:fraction number. For example the value $80000100 results in
the modulation frequency being the same as the pitch.

b) A new parameter, the envelope/sample end point, is specified in the patch at the following
locations:

4 You can also manipulate your program's MAKEFILE so that the MIDI file is essentially the 'source’ file and whenever
it is updated, the PARSE and MADMAC programs will be called automatically by the MAKE utility. See the
MAKEFILE for the sample program provided with the Jaguar Synth & Music Driver.

26 April, 1995 Confidential Information . a.¥ Property of Atari Corporation © 1995 Atari Corp.

Page 25

Libraries
Module Offset
Samplers 8
Waveform 10
FM/Env 15

c) For all samplers, the pitch may be adjusted by a factor placed in the pitch parameter of the
patch. The value $1000 means no change, $800 drops the pitch by 2 factor of 2 (one octave) and

a value of $2000 raises the pitch by a factor of 2.

d) For all patches, the volume may be adjusted by 2 factor placed in the volume parameter of
the patch. The value $100 means no change, $80 drops the volume by a factor of 2, and a value
of $200 raises the volume by 2 factor of 2.

3) The files are built into a program (see below)

4) The program is run and out comes the music.

The program PARSE converts the MIDI file into MADMAC assembler source code using dc.l
directives. It is assembled and converted to a .SCR file®. At this time PARSE and the interpreter
understand the MIDI functions for note on/off, MIDI volume, pitch bend, pan, tempo change, and
looping. The system assumes envelopes are also provided using dc.l directives. These are assembled

and loaded into the DSP at runtime

The Jaguar sound system may be thought of as having two separate components, a synthesizer and a
music interpreter. These two sections are quite independent. although the second requires the first to

actually generate sound.

To use the system, follow these steps. For clarity follow along i% the sample code (DRIVER.S), Load
the DSP code into DSP RAM, set up a voice table, turn on the I S port, start the DSP and turn off mute.
The system is now ready for use as 2 synth. This functionality is primarily intended for interactive

sounds.

To turn on the music interpreter set SCORE_ADD to the Jocation of the tokenized music (this must be 2
long aligned address), set TIMER_ADD to 0, start the timer and out comes music. The remaining code
shows how to add in custom effects. To play music and sound effects simultaneously make sure that
you restrict sound effects to the voice table entries that the music interpreter does not use.

During each sample period the synth goes thru the voice tables (starting at TABLESTART) and checks
the first longword of each one t0 find out which synth module to use next.

5 This is actually controlled by your MAKEFILE. You can use the standard .O extension normally used by object

modules, or you can use a different extension to identify that this object module contains music score data. In the latter

case, the .SCR filename extension (for Musical Score) is recommended.

26 April, 1995

© 1995 Atari Corp. Confidential Information “ZP Property of Atari Corporation

et R i

Page 26 Libraries

The Music driver interprets a structure in memory to manipulate entries in the voice table. This structure
is created by the program PARSE. A list is kept by the parser of all voices that are in use and a warning
is given if the desired polyphony fails to accommodate the needs of the MIDI file being parsed. The
voice assigned to a note on event is determined by taking the last used voice, adding one until an
available voice is found. At any given time the voice table can be quite complex. A representative voice
table follows (showing only the voice type in detail):

-4 ¥ X X e X
8 X X X 4
12 X X X .o X
28 X X X X
-4 X X X X
-4 X X X e X
-4 X X X . .X
16 X X X . e X
-4 X X X e X
24 X X X . X
0

This type of table would be expected while playing an eight voice music file with two channels reserved
for sound effects.

More details may be found in the example files.

To stop your music before the end of the score is reached, you do the following steps:

1) Ramp down the volume to fade out the music and/or sound effects. This step is optional, but it
will probably sound better this way than if you just cut off the music abruptly.

2) Set the SCORE_ADD pointer to point at the end of your music score. This should contain a
long word value of $7FFFFFFF.

3) Step 2 will cause the music driver to stop feeding the synthesizer's voice tables with new
information, but it won’t stop the synthesizer from processing the information already there. To
do this, we must set the voice type value to -4 for each voice you want to turn off. (That’s the
first long word of each voice structure.) This tells the synth to do nothing for those voices.

You may want your sound effects to continue even if your music stops. If you are playing music only
with the first five or six voices, and are using the last two or three voices for sound effects, then in step
1 you would change the volume parameters in the individual voice tables that are being used for music,
and leave the volume of the sound effects voices alone (and don’t turn off those voices in step 3). If
you want to change the volume of everything, including sound effects, then you can either change all of
the individual voices or you can change the UEBERVOLUME variable, which will affect all voices.
The MIDIVOLUME variable will only affect new notes generated by the music driver; changing it will
not change the volume of a note that has started but not yet finished.

26 April, 1995 Confidential Information) Property of Atari Corporation © 1995 Atari Corp.

Libraries

When you want to restart your music, you would simply reset the voice types, volume, and
SCORE_ADD variable to the appropriate values.

Each event consists of two long words. The first long is the time (in milliseconds) from the start of the
song the the event is scheduled for (this limits the length of any individual tune, without loops, to about
6 weeks). The next long is the actual event encoded as follows.

Coded events look like this:

EEEV[VVxxlxxxx\xxxxlxxxxlxxxxlxxxxlxxxx
EEE = Event type

1xx NOTE ON
lxxVIVVPPlPPPF|FFFFIFFFFlFFFF|FAAA|AAAA

V|VV = Voice number

PP|PPP = Patch number
F|FFFF|FFFF|FFFF|F = Frequency
AAA|AAAA = Amplitude

000 NOTE OFF
000V | VVxx | xxxX | XXXX | xxxx | xxxx | XXXX | xxxx

V|VV = Voice number

011 JUMP WITH COUNT
011D|DDDD[DDDD[DDDDlDDDDIDDDD|CCCCICCCC

cccejcece is number of loops played
D|DDDD|DDDD|DDDD|DDDD|DDDD is the number of phrases to jump

010 CONTROLLER CHANGE
010V|VVPP|PPPF|CCCClCNNN\NNNN!NNNNlNNNN

V|Vv = Voice Number

PP|PP = Patch Number

F = Flag to change the base pitch
cccclc = Controller Code

NNN | NNNN | NNNN | NNNN = Value

© 1995 Atari Corp. Confidential Information “ZPR Property of Atari Corporation 26 April, 1995

Page 28 Libraries

Controllers are:

7 = Volume
9 = Pitch Bend
10 = Stereo Pan

The MIDI parser is a command line program which translates a MIDI file into commands recognized by
the Jaguar syntheziser. The output of the parser is a MADMAC assembler source file (ASCII)
containing the sound data for the synthesizer in assembly language format. This file has to be assembled
and linked in with your program, playing the music. The PARSE utility is documented in the Tools
chapter of the documentation.

The MERGE utility is designed to take multiple music data files created with PARSE and merge them
together into a single file that will contain everything interleaved together appropriately. The MERGE
utility is documented in the Tools chapter of the documentation.

The XNOTES utility is designed to automatically create a NOTES.CNF file with the correct note values
for a given sampling rate. The NOTES.CNF file is used by the PARSE utility to control the frequency
value that is used for each musical note. If you change the sample rate used by the Jaguar Synth, you
should run XNOTES to create 2 new NOTES.CNF file, then run PARSE again on your MIDI files. If
you skip these steps, the pitch of the notes will be incorrect. The use of the XNOTES utility is
documented in the Tools chapter.

The SNDCOMP utility is designed to take a 16-bit digitized sound file and compress it to 50% of its
original size. The compression it does is a "lossy" compression, but the quality is quite good. The
compressed sound files it creates are then used with the Jaguar Synthesizer. The SNDCOMP utility is
documented in the Tools chapter of the documentation.

26 April, 1995 Confidential Information . o N Property of Atari Corporation © 1995 Atari Corp.

Libraries - Page 29

The Jaguar sound tool was written to provide a "user friendly” interface to the Jaguar synthesizer
module. The sound tool provides a way of editing up to 8 voices by using one of the seven synthesizer
modules. Each voice can be turned on individually or, together with other voices. Voices can be saved
to or loaded from the host machine allowing you to save work in progress. Additionally, you may save
your work in ASCII form, ready to be linked into your source code. For the rest of this section, it will
be assumed that you have read The Jaguar Synth section.

In general, each of the synth modules share the same user interface. Whenever possible, you'll find that
the joypad keys display the same functionality throughout the different synth editors. You can move
from object to object within an editor by holding down the Fire B button and then pressing up, down
left, or right depending on the placement of the object that you would like to go to. An object is defined
as a single slider, a group of buttons, or any other item that allows you to edit the voice that you're
working on.

As you move to each object, you'll see it being selected by an green box drawn around it. The two main
object types are numerical sliders and buttons. To change the value of a numerical slider, use the
joypad up and down keys to add to or subtract from the total. Using the left and right buttons, you can
move the slider cursor left or right. This will allow you to increment or decrement your slider value by
a larger or smaller amount. Notice that the value will only increment or decrement by 1 each time you
press the up or down key. To scroll through these numbers more quickly, hold down the option key
while pressing up or down. Alternatively, you may type in the direct value and the number will appear
at the cursor location. Button groups are much simpler to use. Simply select the joypad key which
represents the button which you wish to select.

The following is a brief discussion of each of the synth editors along with a description of the main
menu screen.

Each of the 8 synth voices can be edited through this main menu screen. As discussed earlier, use the
Fire B key along with joypad up and down to scroll through each voice. When a voice is chosen, hit
the up and down buttons to select a synth editor then hit 2 to edit the voice. Turn the voice on or off by
hitting the 1 key. Hitting the Fire A key will turn on all of your enabled voices at once. Note that at
startup, each of the voices except for the first one is disabled. Once you have edited a voice, you can
return to the main menu by either using the main menu button or, by hitting the pause key.

The final row of buttons allows you to load or save out your current work. To save your work, move
down until you've selected the last row of buttons. Hit the 2 key and the SNDTOOL program will cause
a break command in the debugger on your host computer. You will be prompted by an alert box with
instructions on saving your file. In the same manner, an ASCII file can be saved out by hitting the 3

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

Page 30 Libraries

key. Note that this is a 100% ASCII file which can be read into any text editor. Each of the voices is
separated by a different label, voicel, voice2:, etc. You will also find envelopes, user defined
waveforms, and wavetable instructions saved out as well. All addresses within the voice table will be
represented by a label. This label will either correspond to one of the labels embedded in the file, or, as
in the case of sample addresses, simply be referenced as an external lable at the top of the file.

é Use the Load Waves button to load in user defined waveforms. You can load in up to 5 different user

: defined waveforms. They are stored at the addresses UWAVE1, UWAVE2, ... UWAVES. Toreadin a
3 waveform for the first user defined wave, use the command:
i

read filename .UWAVEl

The Cwave button performs harmonic synthesis using a table of 32 partials with user specified
amplitude relationships. Briefly, any sound can be broken down into a series of sine waves called
partials or harmonics. The Cwave utility allows the specification of the relative amplitudes of thirty-two
harmonics, which are mathematically combined into a resuitant waveform.

After pressing the 5 number key the harmonics can be entered by typing:
sl .awave
At this point the first harmonic can be entered by typing a hexadecimal value and pressing [Return].
; This automatically displays the field for the second harmonic. Pressing [Return] again brings up the
1 field for the third harmonic, etc. After entering the last harmonic and pressing [Return] a dot (*.") has to
be entered followed by a [Return] . The debugger then returns to its command line. To continue, type:

g .continue

: The Cwave utility stores the waveform it creates in user wave 1. After a wave has been created, it may
] be saved using the Waveform Load/Save button.

Use the numerical sliders to change frequency and depth of modulation. Use the text sliders to select
your waveforms and pitch. Select these values by using the up and down joypad keys until the selected
; pitch or waveform appears in the slider. Use the Frequency mode button to select the way the frequency
4 value is calculated. When in "Fixed" mode, the frequency value in the voice table will be whatever is
] shown in the slider. When in "ratio" mode, the frequency value will be whatever is in the slider
? multiplied by whatever pitch value you have. Note that the frequency multiplier will be in the 15.16
1 format so for instance, 1.32768 in the slider will represent a multiplier value of 1.5. Exit the synth by

using the Main Menu button or by hitting the pause key in any object. Play the sample by pressing the
Fire A button. Press it again to turn the voice off.

26 April, 1995 Confidential Information “2TR. Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 31

Identical to Simple FM except for extra sliders to provide an extra indirection of modulation. The synth
documentation will provide the needed details.

From a user interface standpoint these two editors are virtually identical. There is currently a default 16
bit sample built into the sound editor. To load additional samples, select the Load Sample button from

the first group of buttons.

The sound tool will currently handle Audio IFF files and AVR files as well as raw sample files. Since
there is no header information stored with a raw sample file, you must set the variable .samplesize to let
the sound tool know how big the newly loaded sample is. You can accomplish this by typing in the
following:

sl .samplesize (type in new number of samples here)

You can now type in "g .continue" to return to the program. Currently the maximum sample file size
that the sound tool will accept is 200000 bytes. (NOTE: The tool currently does not extract pitch
information from AIFF files.)

Use the numerical sliders to set loop length, loop end and pitch values. You can play the sample by
pressing the Fire A button at any time. If the Loop On button has been selected, the sample will play
continuously, looping through the parameters which you have set up. Once the Fire A button has been
released, the synth will play the rest of the sample.

Use the numerical sliders to set rate, loop end, and loop length. Use the up and down buttons to cycle
through the given pitches and waveforms. You can edit the envelope by first making it the current
object. Use the joypad up and down buttons to increase or decrease values at the current point. Move to
the next point in the envelope by holding down the Fire C button and using the joypad left and right
buttons. Insert points by pressing the 1 number key on the keypad. In the same way, delete points by
the 4 key. Pressing the 0 number key will restore the envelope to a standard default. You may choose
any one of five envelopes (through the envelope slider) to sample or edit. Each time you scroll through
an envelope you will be able to see it change visually on the screen. The voice can be plaved by using
the Fire A button. As with the sample editor, the sound will loop until the Fire A button is released.

A new envelope can be saved or loaded by selecting the load/save menu button. Load or save functions
will affect the current envelope. (The one displayed in the slider) After breaking, you will be promted
1o input the correct commands to load an envelope. At this point you can also save out the current
envelope to be used at another time.

© 1995 Atari Corp. Confidential Information “7PR. Property of Atari Corporation 26 April, 1995

Page 32 Libraries

‘ This synth editor combines the features of the waveform and simple FM synths. See The Jaguar Synth
section for details.

T
The 21\ Wavetable editor will allow you to edit a set of wavetable instructions. Use the sustain/release
buttons to select which list of instructions you want to edit. The large object in the center of the screen
will hold your list of instructions. Notice that the current instruction in this list will be highlighted in
green. Use the up and down joypad keys to scroll the list. This current instruction will also be
| represented by the sliders at the bottom of the screen. You can use these sliders to create a new
wavetable instruction. Use the panel of buttons on the right side of the screen to insert the new
! instruction (represented by the slider values) into the actual wavetable instruction list. You can also
‘ change the existing instruction or remove an instruction using this bank of buttons. The last instruction
: in your sustain list will automatically loop to the first instruction. If you would rather loop to another
; instruction, place the index of the instruction that you want to loop to into the Loop To slider. Notice
that the Fade Length slider shows positive values. The tool will negate the value before passing it on

to the synth.

This synth editor combines the features of the waveform and 16 bit sampler synth. Note that the
envelope is of a different kind in this module. The new envelope for this module is a basic slope-
destination, time envelope.

The Amplitude information is about the current point and the Time is the amount of time it takes to get
from the previous point's amplitude to this point's amplitude.

You can add points by pressing the 1 number key while inside the envelope window and delete points
by pressing the 4 key. To move from point to point hold down the Fire C button and use the joypad.
The point can be edited vertically as well as horizontally.

The two parameters that are available to the user are:

| - Amplitude (0 - 32767)
| - Time (O - 2,000,000,000 ms)

The information (Amplitude and Time) about each point are updated as the points are moved. See The
Jaguar Synth for details.

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1995 Atari Corp.

Page 34 Libraries

The basic tasks for processing MIDI files consist of:

o converting (or parsing) your MIDI file into a form that the Jaguar can use
o creating synthesizer and sample patches
o incorporating patch information into files used by the Jaguar synthesizer

Figure 1 illustrates these tasks. The following is a summary of the steps required 1o complete these
tasks. Each of these steps is described in detail in later sections of this document.

1. Install the Jaguar Music System tools.
a. Install the tools and sample code from the distribution archives
b. Create a new directory for your music project.
c. Copy the Jaguar sound fiies to the new directory.
2. Create your sound patches.
a. Design and save your synthesized and sample patches.
b. Save ASCII versions of your patches.
c. Convert your samples to raw format, compress them, and write down sample
information. : ‘

3. Prepare your MIDI file.

a. Clean up your MIDI sequences.
b. Write down information about your MIDI sequences.
c. Save your MIDI file in sections as separate type 0 MIDI files.

4. Copy your MIDI Type 0 files, patch ASCII files, and samples.
5. Extract patch data, envelope, waveform and wavetable data to separate ASCII files.

Extract patch data to separate ASCII files.

Replace the label names in your patch data.

Adjust other patch values in your patch data.
Extract envelope data to separate ASCI! files.
Extract user waveform data to separate ASCII files.
Extract wavetable data to separate ASCII files.

Te e o

6. Modify the file synth.s.

Set the number of patches. R ‘
Include patch data files. 2
Write down patch numbers.

d. Add sample labels and include sampie files.

26 April, 1995 Confidential Information i 9.8 Property of Atari Corporatior © 1995 Atari Corp.

oo

Page 35

Libraries
€. Initialize the voice table to the correct number of voices. !
f. Add waveform labels and include user waveform files. i
g. Add envelope labels and include envelope files. %
h. Add wavetable labels and include wavetable files.

7. Add MIDI information to parse. cnf.

8. Run the parse program to parse your MIDI files.

9. After testing your music one section at 2 time, run the merge tool to combine your sections.
10. For each MIDI file, change the MIDIFILE entry in the makef ile.

11. Run the make tool.

12. Load and run test.cof.

13. Refine your MIDI files, patches, and voice settings.

14. Adjust volume and tempo in synth.cnf if necessary.

15. Repeat steps 5 through 14 until your music plays correctly.

o

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

i Page 36 Libraries

] MIDI Sequencer Sound Tool Sampler
Create MIDI file Create patches and ‘ Create samples
save as ASCII

Section a ' l

Section B

£ inf ny Convert to
v Section C Extract information raw format and

from ASCII patch compress

Parse and merge sections Patches,
one at a time Waveforms,

Envelopes,
Wavetables

; Include
]) synth.s

—’l mekefile

Refine music and patches . 4

1 ——

make

rdbjag

Listen to music

Figure 1. Processing a MIDI File

This section presents the steps for processing a MIDI file in detail.

26 April, 1995 Confidential Information)R Property of Atari Corporation © 1995 Atari Corp.

B Libraries

0

Page 37

a. Install the tools and sample code from the distribution archives.

The Jaguar Music System tools and sample files are installed automatically when you install the disks
that come with a Jaguar Development System. If you have received updated archives containing the
tools (or downloaded them from an online service), then you should extract the archives into a
temporary directory. The directory structure used in the archives is:

JAGUAR\BIN - Various tools such as the MIDI parser, sound sample file format conversion utilites, €tc.
JAGUAR\MUSIC\FULSYN - The Jaguar Synthesizer, source code and linkable object code.

JAGUAR\MUSIC\SNDTOOL - The Jaguar Synthesizer Sound Tool - Used for creating patches for the
Jaguar Synth.

JAGUAR\MUSIC \SNDTOOL.MID - The MIDI version of the Sound Tool.

JAGUAR\MUSIC\SOUNDS - A variety of ready-made sound patches for use with the Jaguar Synth and
the Sound Tool.

JAGUAR\MUSIC\MUSICDRYV - The sample program for the Jaguar Synth. This is the sample program
described in this document.

JAGUAR\MUSIC\SYNDEMO - This is an alternate sample program for the Jaguar Synth. This one
includes a more complex MIDI score that uses multiple instruments and looping. Also, this one uses

multiple FM patches and no samples.
To extract the various archives using this directory structure, use the following command:

pkunzip -4 music.zip

Where “music.zip” is the name of the archive you are extacting at the moment. The PKUNZIP tool is
supplied on your original Jaguar Developer System disks.

If you are installing an update, please always extract the archives to a temporary directory first, so you
can backup the existing files before copying over the new ones.

b. Create a new directory for your music project.

Make a new directory on your hard disk. You will use this directory to hold your MIDI file, synthesizer
patches, samples, and several Jaguar files and programs .

The Jaguar Music System Tools distribution includes two sample projects. One plays a simple scale of
notes using the Jaguar Synth’s Sample module. This project is contained in the directory :
JAGUAR\MUSIC\MUSICDRV. The second sample plays a more complex song with multiple voices,

© 1995 Atari Corp. Confidential Information 7T Property of Atari Corporation 26 April, 1995

Page 38 ‘ Libraries

and uses FM patches instead of samples. This project is found in the JAGUARWMUSIC\SYNDEMO
directory.

c. Copy the Jaguar sound files to the new directory.
This document uses the MUSICDRV project as its example. You will need the following files to
perform the procedure described in this document. During this procedure, you will need to modify some
of these files. Be sure to save the original copies of these files so you can use them for other projects.
You will need to change the following files using a text editor.

makefile

This file is used by the MAKE tool to compile various files into an executable program file.

parse.cnf

This file contains MIDI channel, MIDI note range, voice number, and transposition data for the
MIDI parsing process. It is used by the PARSE utility.

synth.s

This file is used to assemble patch data, samples, envelopes, user waveforms, and wavetables
that must reside in the Jaguar's memory.

synth.cnf
This file contains settings for global and MIDI volume of the synthesizer and the system clock
used to adjust music tempo. This file also allows the Jaguar Synth to be reconfigured for the
optimum performance and memory usage requirements for individual projects (this requires that
the Jaguar Synth source code be reassembled -- see below).

You will not need to change the following files:
driver.s
This file contains initialization information for the Jaguar synthesizer.

fulsyn.inc

This file contains parameter settings and instructions for the Jaguar synthesizer. (This file is
Jocated in the JAGUAR\MUSIC\FULSYN directory.)

£s02_50.das

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 39

This file is the Jaguar DSP source code for the Jaguar synthesizer. You should not have to
change it, but you may recompile it to add or delete different synthesizer modules according to
the needs of individual projects (controlled by the SYNTH.CNEF file). (This fileis located in
the JAGUAR\MUSIC\FULSYN directory, but depending on the version, the filename may
change.)

e £502_50.0]

This file is the linkable object module for the Jaguar synthesizer (This file is located in the
JAGUAR\MUSIC\FULSYN directory. Depending on the version, the filename may change.)

a. Design and save your synthesized and sample patches.

Create the sound patches to be played by your MIDI file. You may want to perform this step before you
compose your music, Or perhaps at the same time. This way, you will have a better idea of what sounds

the Jaguar is capable of producing.

You can use the Sound Tool 1o create synthesized patches or use sampling software to create 16-bit
samples.

If you use samples, we suggest you use 2 sampling rate of approximately 20 KHz to match the default
playback frequency of the Jaguar. You must use mono samples. If you have stereo samples, you can use
the MONO utility to convert them to mono.

We suggest you use the Sound Tool to set parameters of your samples, including pitch, loop parameters,
and envelopes. For more on voicing samples on the Jaguar, see the More on Voicing Samples section.
Load the Sound Tool into the Jaguar using rdbjag by typing the following:

rdbjag
load sndtool.db
g

For more information about creating sound patches, se¢ the Jaguar Sound Tool Users Guide and the
Jaguar Synth document.

The Sound Tool creates two kinds of patch files. One is an ASCII file designed to be assembled as
Madmac source code as part of your project. The other is a binary file used to load and save patches
that are being edited. Although it creates both types of files, the Sound Tool only knows how 10 load
the binary files. Therefore, after creating a patch, we suggest you always save itin a non-ASCII file so
you can reload it into the Sound Tool at a later time and make changes as needed. When saving these

files, we suggest you save the files with an extension of .ptcina directory called sounds.

Important: Synthesizer patches use a lot less memory than samples. And, samples use outside
resources that are shared by graphics, causing slower game play and possible sample distortion. Because

© 1995 Atari Corp. Confidential Information 7B Property of Atari Corporation 26 April, 1995

Page 40 Libraries

of these problems, you should avoid using samples as much as possible and instead use synthesized
sounds for your music. This is particularly important for games in which the available space for music is
very limited. If you must use samples, restrict them to important sounds that you cannot synthesize.

b. Save ASCII versions of your patches.

For each patch you create, use the Sound Tool to save it as an ASCII file. If you created any patch data
information for samples, you should save this patch data as ASCII as well.

To save a patch in ASCII format, go to the main page of the Sound Tool and select the Save Patch
command. We suggest you name these files with an extension of .asc, and place these files in a
directory called ascii.

c. Convert your samples to raw format, compress them, and write down sample information.

The Jaguar DSP plays raw samples only. Raw samples contain the sample sound information, but do not
contain other information such as looping data. If you created your sample in another format, such as
the Audio Interchange File (AIF) format, you need to convert your samples to raw format for them to
play correctly on the Jaguar. To do this, use the stripaif tool on your samples, and create other
sample parameters (looping and pitch) in the patch data using the Sound Tool.

Next, compress your samples using the sndcmp tool. This tool compresses samples from 16 bit to 8 bit.

Also, write down the file name and file sizes of each sample. You may need the file size information
when adding patch data to synth.s.

a. Clean up your MIDI sequences.

After composing your music, you may want to clean up or modify your MIDI sequences before
processing them for the Jaguar. Use your sequencing software to inspect each of your MIDI tracks.
When examining your tracks, look for the following and make changes as needed:

1. Verify that the number of voices being played by all of your tracks at one time (the polyphony)
does not exceed the polyphony you are allowed for your game music.

The Jaguar's polyphony is determined by the amount of time the synthesizer has to create each
sound. The amount of time the Jaguar takes to create a sound depends on which synth module is
for the sound. The total time available for the Jaguar to create sounds is 168 time units.
Therefore, when determining the polyphony for your music, you must add the time values for
each module you use to make sure the total time is at or below 167. Also keep in mind that some
of the Jaguar synth's time available may be used to synthesize sound effects instead of music.
For more information about calculating polyphony, see the Jaguar Synth document.

26 April, 1995 Confidential Information R Property of Atari Corporation © 1995 Atari Corp.

/f,.,;.

Libraries

Page 41

b.

2.

Check the quantization of your tracks to be sure that the timing of your notes (when notes start
and end) is what you want. You may choose to leave your music as you recorded it to give it a
more natural feel. Or, you may need to quantize some or all of your notes to correct for timing
problems.

Check that the note durations are what you want them to be. For example, if a note is used to
trigger a sample that does not use an envelope, you may want to shorten the note duration 10
prevent undesired looping. You can also adjust the loop parameters of a sample and apply an
envelope to it using the Sound Tool.

Be aware that any notes that trigger patches with long decays may affect your polyphony
calculations since decay of the patch sound may overlap new notes being triggered. Too avoid
this problem, be sure that your patch envelopes decay before the next note is triggered for that
patch. For example, suppose there are two sequential half notes, with the first note ending before
the second is triggered. Also suppose that the tempo of your music causes each note to last for
one second. If the patch you use for these notes has an envelope that decays in one second or
less, there is no problem. However, it the envelope decays in longer than a second, another voice
will be needed to play the second note. If you are at the limit of your polyphony, the second note
may not play at all.

Verify that the note on velocities are set to the desired level. For example, you may want to
make the attack of a track consistent. On the other hand, you may want to leave them exactly as
you performed them.

Adjust the volume the instruments used for each track (MIDI controller 7) as needed. You will
likely be using different sounds on the Jaguar than the ones you used to compose your music.
Because of this, it is hard to predict the what the relative volumes wiil be for your Jaguar
sounds. For example, you might set the volume of your kick drum to be just right when you play
it back on your sequencer. But, when you play it on the Jaguar, the kick may not be loud
enough. Because it is hard to know ahead of time what the relative volumes will be for your
patches, you may want to set some or all of your instruments volumes 10 a constant level (such
as MIDI value 100). You can then mix the volumes on the Jaguar as needed from within the
patch data file (synth.s) until they sound right.

If you want to have your MIDI file loop in the game, you need to set loop points in your MIDI

file. For more information about how to set MIDI file loop points, see the Looping MIDI Files
section of this document.

Write down information about your MIDI sequences.

Write down your MIDI file information for later use.

Write down the MIDI channel numbers for each track in your MIDI sequences. You will need
these numbers when you parse your MIDI file in step 11.

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

Page 42 Libraries

2. Write down the MIDI note ranges (as MIDI note numbers) for each track. This information is -
required if you intend to play different sounds on the same MIDI channel. For example, if you
recorded a track using a split keyboard, or drum machine, you need to write down which notes
are for which sounds. You will use this information when you parse your MIDI file.

c. Save your MIDI file in sections as type 0 MIDI files.

The Jaguar music driver software plays type O MIDI files. This is a standard MIDI file format that
merges multiple-channel tracks into single tracks. Type 0 MIDI files still retain the MIDI channel
information of your tracks.

Therefore, to play your MIDI music, you must first convert it to one or more type O MIDI files. To test
your music on the Jaguar, we suggest you save individual tracks (or groups of musically related tracks)
as separate type 0 MIDI files. This way, you can test and refine separate parts of your music, making it
easier to identify and fix problems you may find.

After testing and refining your tracks, you can use the merge tool to merge these files into one file for
use on the Jaguar.

When saving your MIDI sequences, we suggest you name them with an extension of .mid.

If they are not already there, copy your MIDI type O files, each of the ASCII patch files you created,
and your samples, to your music project directory.

a. Extract patch data to separate ASCII files.

Edit each ASCII patch file you created and locate the patch data. This data is a column of .dc. 1 values

used by the Jaguar synthesizer and music driver. The patch data is located after the label
_sounddata:

Each ASCII patch file contains data for all pieces needed for your synthesis module. All envelopes, user
waves etc. associated with your sound will be save in one file.

Once you have located the patch data, copy it from your ASCII patch file to a separate file.
We suggest you name these files with an extension of .dat, and place them in a directory called
patches. -

26 April, 1995 Confidential Information ‘PR Property of Atari Corporation © 1995 Atari Corp.

A
4

Page 43

Libraries

Rb. Replace the label names in your patch data

i Replace the temporary label names (_env0, _envl, and so on) in your patch data to match the label

pames you will put in synth.s. For synthesized patches, you may need to replace envelope, user
waveform, and wavetable labels within your patch data. For sample patches, you will need to replace
sample and envelope labels.

We suggest you prefix Jabel names for envelopes with e_, user waveforms with w_, wave tables with
t_, and samples with s_. For consistency across platforms, we also recommend you use labels of eight

or fewer characters.

c. Adjust other patch values in your patch data.

There are other voice parameters you may want to modify in the voice data of your patches. These
parameters include the volume and pan value, among others. The location of the volume parameter

varies with the type of patch you are editing.

The pan parameter is always the four rightmost digits in the last parameter in a patch. You can adjust
the pan value between 0 0000000 (pan full right) and 00007FFF (pan full left). Setting this parameter

to 00003FFF centers the balance.

Refer to the Jaguar Synth document for descriptions of these and other parameters for the type of patch
you are adjusting.

d. Extract envelope data to separate ASCII files.

Edit each ASCII patch file you created that uses envelopes (such as EM envelope and sample patches).
Within each file, locate the envelope data that your patch actually uses. Envelope data is located in the
file after the patch and user waveform data.

Each ASCII patch file contains data for the envelope used in your sound (_env0 - _env7).

Once you have located the envelope data for your patch, create a separaic file and copy the data into the
file. Do this for each patch that uses an envelope.

We suggest you name each file as patch.env, where patchisan abbreviation of the patch name
associated with the envelope. Write down the file names for future reference. You will need to include
these file names in synth.s.

When saving an envelope data file, we suggest you place it in one of two directories, env or
slopeenv. Place envelopes you extracted from sample envelope patches in slopeenv directory.
Place all other envelopes in the env directory.

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

Page 44 Libraries

e. Extract user waveform data to separate ASCII files.

Edit each ASCII patch file you created that uses a user waveform. Within each file, locate the user
waveform data that your patch actually uses. User waveform data is located after the envelope data in
the file.

Once you have located the wavetable data for your patch, create a separate file and copy the data into
the file. Do this for each patch that uses a user waveform.

We suggest you name each file as patch.wav, where patch is an abbreviation of the patch name
associated with the user waveform. Place these files in a directory called waveform. Write down the
file names for future reference.

f. Extract wavetable data to separate ASCII files.

Edit each ASCII patch file you created that uses a wavetable. Within each file, locate the wavetable data
that your patch actually uses. Wavetable data is located after the patch data in the file.

Once you have located the user waveform data for your patch, create a separate file and copy the data
into the file. Do this for each patch that uses a wavetable.

We suggest you name each file as patch.tbl, where patch is an abbreviation of the patch name
associated with the user waveform. Place these files in a directory called wavetabl. Write down the '
file name for future reference.

a. Set the number of patches.

Set the dc . w value under patches: : to be the number of patches you are using. For example:

patches::
dc.w 7 ; NUMBER OF PATCHES

b. Include patch data files.

Once you have created separate ASCII patch files include the file names in synth. s. The location for
including these patch files is labeled in synth.s as patches: :

» It is important to realize the order in which you put your patches in synth.s defines the patch number
5 used by the Jaguar. For example, the first patch in synth.s will be patch 0.

26 April, 1995 Confidential Information ‘AR Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 45

;s Patch 0

.include 'patches\\strlow.ptc’ . strlow patch (\\ is needed because \ is a
; special character). uses 's_strlow’ sample

; and 'e strlow' envelope

For a complete example of this file, see the Example Files section.

(3 Write down patch numbers.

Write down the numbers for the patches you add. You will need to know these numbers when you
modify parse.cnf to map your MIDI channel numbers to the actual patches you use.

d. Add sample labels and include sample files.

Add labels for your samples and include your sample files. The labels you choose must match those you
specified in your ASCII sample patch files. For example:

s_strlow:
.incbin "samples\\synstrgs.cmp" ; sample used in patch 0
e. Initialize the voice table to the correct number of voices.

Add a zero to the voice table field that is the last voice to be used. For example, the following table
places a zero at voice 7, indicating eight voice polyphony:

.ORG tablestart

TABSSTART: : ; DO NOT EDIT THIS LABEL

de.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,06,0,0,0,0 ; voice 0O
dc.1l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 1
dc.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 2
dc.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 3
de.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 4
de.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 5
de.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 6
dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 7-LAST
de.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 8

> dc.1l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 9

£ dec.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 10

- de.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 11
dc.l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 12
dec.1l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 13
dc.l 0

© 1995 Atari Corp. Confidential Information “ZR Property of Atari Corporation 26 April, 1995

Page 46 Libraries

f. Add waveform labels and include user waveform files.

Add labels for your user waveform and include your waveform files. The labels you choose must match
those you specified in your ASCII patch files that use the waveform.

g. Add envelope labels and include envelope files.

Add labels for your envelopes and include your envelope files. The labels you choose must match those
you specified in your ASCII patch files that use the envelopes.

h. Add wavetable labels and include wavetable files.

Add labels for your wavetable and include your wavetable files. The labels you choose must match
those you specified in your ASCII patch files that use the wavetable.

Edit the file parse.cnf to set the polyphony of your music, map your MIDI channels to the voice
numbers you set in synth. s, define the note ranges for your voices, and transpose your tracks if
necessary. The format for entering this information is:

n = note_polyphony '
MIDI channel - 1: note_range patch_number transpose_value

MIDI channel - 1 setsthe MIDI channel number. You must subtract one from it since the Jaguar
voice numbers are zero-based.

note_range sets the range of notes played by a particular sound. This allows you to achieve the same
effect as a split keyboard or a drum machine in which one MIDI channel is used but different sounds are
triggered depending on the notes played. For example, for MIDI channel 1, MIDI note 36 may trigger a
kick drum sound, while MIDI note 38 will trigger a snare.

patch_number is the number of the patch to use based on the sounds you defined in synth.s.

transpose_value is the amount in which to transpose the defined note range The transposition is in one
note increments and can be either positive or negative A value of 12 will transpose up an octave, a value
of -12 will transpose down an octave, and a value of 0 will leave the notes untransposed For example:

n=2_8 ; 8 note polyphony
0: 36-36 0 0 ; kick
0: 42-42 1 0 ; clsdhat

26 April, 1995 Confidential Information ‘7R Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 47

0: 46-46 2 0 ; openhat

For a complete example of this file, see the Example Files section.

Normally you would edit the makefile file for your project to include the names of your MIDI files so
that the PARSE tool is called automatically when required. See the makefile for the sample programs
for examples of this. However, you can also run the PARSE utility directly from the commandline if

necessary. Type the following command to parse your MIDI files:
parse -qg yourMIDIfile

The -q is an optional flag to suppress the output of the parse command. If you want to examine the

parsing process as it occurs, do not use this flag. The parse output will be displayed to the screen. You
can also redirect this output to a file so you can inspect it later. The parsing information may be useful

for finding a problem if your MIDI file does not play correctly.

A common error you may see is that note on or note off has failed. This occurs when the polyphony of
your MIDI file exceeds the polyphony you defined in parse.cnf. If this happens, increase the polyphony
value (if possible) or reduce the polyphony in your MIDI file.

See also the PARSE utility release notes (in the JAGUAR\DOCS directory).

Merge your separate MIDI sections into one file. Use the merge tool to do this as follows:

merge merged file input_filel.out input_file2.out ...

where merged_file is the resulting merged MIDI file, and input files are the parsed output files of your
individual sections generated by the parse program.

Normally, you would edit your project’s makefile so that the MERGE tool would be called by the
MAKE utility when appropriate.

Edit the makefile and change the file name of the MIDI file you are processing. For example:

© 1995 Atari Corp. Confidential Information “7P Property of Atari Corporation 26 April, 1995

Page 48 Libraries

i MIDIFILE = cscale ‘

For a complete example of this file, see the Example Files section.

Note: Do not change anything else in the makefile unless you are familiar with how it works. Changing
other text , spaces, or tabs in this file may cause it to not work correctly.

Run the make program as follows to create the file test.cof. This file is the executable version of
your music for the Jaguar. Type:

make

Run the debugger rdbjag and load the file test.cof. This command will play your music on the
Jaguar as it will sound in the actual game. Type the following commands:

rdbjag
aread test.cof
g9

Repeat the steps above as needed to refine your MIDI files, patches, and voice settings. It is often
necessary to adjust the volume of your instruments and mix between them using the pan parameters.
You may also need to adjust the pitch and loop parameters for your samples.

If necessary, adjust the global or MIDI volume settings in synth.cnf. Also, adjust the tempo. If your

music plays too slowly adjust the SCLKVALUE parameter down. If it plays too quickly, adjust the
parameter up. For example:

GLOBALVOLUME equ S7fff
MIDIVOLUME equ ST1f£f

SCLKVALUE equ 19

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1995 Atari Corp.

i Libraries - Page 49

Rerun parse, merge, and make to generate a new test .cof file. Then, run rdbjag, load
test.cof, and type ‘g to play your music. Repeat this process until your music plays correctly.

We suggest you minimize your use of samples in your music because they use a ot of memory.
However, if you use samples, you can either use the Sound Tool to create sample patch data for you, or
copy the patch data of any sample that already exists in synth.s and modify it as needed. In general,
we suggest you use the Sound Tool to set sample parameters, particularly if you need to adjust loop
parameters, such as beginning, ending, and length of the loop, or if you want to apply a volume
envelope to your sample.

If you have not used the Sound Tool to create the voice data for your samples, and instead have copied
data for an existing sample, you must change the following .dc .1 parameters of the sample voice:

. voice type

The first parameter in the voice data of a sample. The voice type must be $0000002C for 16-
bit compressed samples.

J volume

The second parameter in the voice data of a sample. The volume can be any hexadecimal
number that occupies the four rightmost digits. The maximum volume is 00007FFF.

. sample label

The third parameter in the voice data of a sample. The sample label is a label you define to
identify the sample in the makefile. This parameter is also known as the start of the sample.

. sample pitch

The fourth parameter in the voice data of a sample. The sample pitch is typically $00001000,
which indicates no change from the original sample pitch. A value of $00002000 doubles the
pitch (raises it an octave) and a value of $00000800 halves the pitch (lowers it an octave).

. end of loop point

The fifth parameter in the voice data of a sample. The end of loop point for the sample. The
value for this parameter is:

((file size/2) <<8) -1
where the file_size is the size of the sample you noted in step 9.

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

Page 50 Libraries

loop length

The sixth parameter in the voice data of a sample. The loop length for the sample. The value for
this parameter is also:

((file_size/2) <<8) -1
. end of sample

The ninth parameter in the voice data of a sample. The end of sample point for the sample. The
value for this parameter is also:

((file size/2) <<8) -1
¢ sample envelope label

The tenth parameter in the voice data of a sample. The label of the sample envelope as defined in
tables.das:

During game play, you may want one or more of your MIDI files to repeat unti] the player completes a
task of moves to another level. To do so, you need to add loop parameters to your MIDI file before
processing it. The following procedure describes how to add this information.

1. Identify the point in your MIDI file where you want to start looping. This is called the loop
target. At that point in your MIDI file, insert a MIDI controller 12 event with a value of the
target number (for example, a O for the first target, a 1 for a second target (if any).

2. Locate the position in your MIDI file where you want to stop looping. At this point in the file,
insert a MIDI controller 13 with a value of the loop target you defined in step 1.

3. Insert a MIDI controller 14 event with a value of the number of times to loop (up to 127 times).
If you set the value to a negative number, the MIDI file will loop forever. Insert controller 14
right after the controller 13 event.

4. You can loop for longer than the value you assigned for controller 14 by setting the loop count
value in synth.s. For example, setting this value to 128 will cause the MIDI file to loop
infinitely.

26 April, 1995 Confidential Information ‘AR Property of Atari Corporation © 1995 Atari Corp.

- Libraries Page 51

 The following code listings are examples of the four files (nakefile, parse.cnf, synth.cnf,
and synth. s) you need to modify when preparing music for the Jaguar.

Makefile MUSIC DRIVER

e W= A

SYNTHPATH = /jaguar/music/fulsyn

o =

Use 'erase' and 'rename’ oOn MS-DOS
$ Use 'rm' and 'mv' on Atari w/ csh

P
ERASE = erase

RENAME = renamne

s========
4 MIDI FILE WITHOUT EXTENTION (!!)

#_.. Sp—— —

MIDIFILE = cscale

MIDI Parser flags
#—_ ———————
PARSERFLAGS = -g
o F——
Assembler & Linker flags
$ ————
MACFLAGS = -fb —i$(SYNTHPATH);$(MACPATH)
ALNFLAGS = -g -e -1 -a 802000 x 4000

‘ #

| $# Default Rules

] b———mesmmm—mm===========m=ss=========s==
.SUFFIXES: .scr .mid
.mid.scr:

‘ parse $(PARSERFLAGS) -©O $* out $*.mid
g mac $(MACFLAGS) -o$*.scr $*.out
S(ERASE) $*.out

#
.SUFFIXES: .out .mid

© 1995 Atari Corp. Confidential Information ‘PR Property of Atari Corporation 26 April, 1995

Page 52

Libraries

.mid.out:

parse $(PARSERFLAGS) -o $*.out $*.mid

#

.SUFFIXES: .scr .out

.out.scr:
mac $(MACFLAGS) -o$*.scr S$*.out

#

.SUFFIXES: .0 .S

«S.0:
mac $(MACFLAGS) $*

.SUFFIXES: .0j .das
.das.oj:

mac ${MACFLAGS) -o$*.o0j $*.das
____________ —
FULSYN = S$(SYNTHPATH)/fs02 50.0j
OBJS = driver.o synth.o $(MIDIFILE).scr
SCORE = $(MIDIFILE).scr
EXEC = test.cof
___________ —
EXECUTABLES

$(EXEC): $(OBJS) $(FULSYN)

aln $(ALNFLAGS) -o $(EXEC) $(OBJS) $(FULSYN)

r'

"
Dependencies

#
driver.o: driver.s synth.cnf $(SYNTHPATH)/fulsyn.inc
synth.o: synth.s synth.cnf $(SYNTHPATH)/fulsyn.inc

$ (MIDIFILE).scr: $(MIDIFILE).mid

$ (FULSYN) :
mac $(MACFLAGS) -o$*.o0j S*.das

$(SYNTHPATH) /£s02_50.das synth.cnf $(SYNTHPATH)/fulsyn.inc

EOF

* File:

parse.cnf

26 April, 1995

Confidential Information 7!!(.Pnymﬂyquuuiqunnaﬁan

© 1995 Atari Corp.

Libraries Page 53
* Description: MIDI information file for the parse utility.

* Project:

* Composer:

* Date:

*

* Format: Change the data in this file according to the

* following format.

»*

* n = max_note_polyphony (default is 8 note polyhony)

* midi_channel - 1: lowest note - highest note patch number transpose_value
*

n=2_8 ; 8 note polyphony

0: 36-36 0 0O ; kick

0: 42-42 1 © ; clsdhat

0: 38-38 3 0 ; snare

3: 43-55 6 0 ; bass

This is a simple sample program to play a tune on the synth code.

MODULE: SYNTH CONFIGURATION FILE
DESCR: THIS FILE CONTAINS THE FULSYN CONIFGURATION
(WHICH MODULES TO INCLUDE), GLOBAL VOLUME, SCLK, etc.

COPYRIGHT 1992,1993,1994 Atari U.S. Corporation
UNAUTHORIZED REPRODUCTION, ADAPTATION, DISTRIBUTION,
PERFORMANCE OR DISPLAY OF THIS COMPUTER PROGRAM OR

THE ASSOCIATED AUDIOVISUAL WORK IS STRICTLY PROHIBITED.
ALL RIGHTS RESERVED.

e Me N wme we 0w

Configuration for Fulsyn.
To save DSP memory, turn only those module on that are needed.

-
’

ON equ 1
OFF equ 0

FMSIMPLE MOD equ ON
FMCMPLX_MOD equ OFF
FMENV_MOD equ ON
WAVEFM_MOD equ ON
WAVEFM2_ MOD equ ON
WAVETAB MOD equ ON
SMPL8_MOD equ OFF
SMPL16_MOD equ OFF
CSMPL16_MOD egu ON
SMPLENV MOD equ OFF
CSMPLENV_MOD equ ON

©

1995 Atari Corp. Confidential Information “7ZR Property of Atari Corporation 26 April, 1995

Page 54 Libraries

The following is for the note on/off modules.
This section does not need to be edited.

LY YR Y]

WAVEFM_NOTE equ WAVEFM MOD + WAVEFM2 MOD

FMCMPLX_NOTE equ FMCMPLX MOD

FM_NOTE equ FMSIMPLE _MOD + FMENV_MOD

SMPL_NOTE equ SMPL8_MOD+SMPL16_MOD+CSMPL16_MOD+SMPLENV_MOD+CSMPLENV MOD
WAVETAB_NOTE equ WAVETAB_ MOD

SET GLOBAL & MIDI VOLUME

~ W wme

GLCBALVOLUME edqu S7ffsf

MIDIVOLUME equ S7fff
H
; SET SCLK
H

SCLKVALUE equ 19

-~ we

EOF

MODULE: SYNTH DATA FILE
DESCR: THIS FILE CONTAINS THE PATCHES, SAMPLES, ENVELOPES,
USER WAVEFORMS AND AN INITIALIZED VOICE TABLE.

COPYRIGHT 1992,1993,1994 Atari U.S. Corporation

UNAUTHORIZED REPRODUCTION, ADAPTATION, DISTRIBUTION,]
PERFORMANCE OR DISPLAY OF THIS COMPUTER PROGRAM OR /
THE ASSOCIATED AUDIOVISUAL WORK IS STRICTLY PROHIBITED.

ALL RIGHTS RESERVED.

.include *jaguar.inc’ 3
.include *fulsyn.inc']
.include *synth.cnf’

.data

.even / -
;*** i
Haald EDIT AFTER THIS POINT) * %

;***

26 April, 1995 Confidential Information “7PR Property of Atari Corporation © 1995 Atari Corp.

i Libraries Page 55

] patches::
dc.w 1 ; NUMBER OF PATCHES

: Patch 0
.include 'patches\\strlow.ptc’ ; strlow patch
; uses 's_strlow' sample

and 'e_strlow' envelope

strlow_s:
.incbin "samples\\synstrgs.cmp” ; sample used in patch 0

TABS_COPY::
de.l TABSSTART ; DO NOT EDIT THIS LABEL
de.l TABSEND - TABSSTART ; DO NOT EDIT THIS LABEL

. —-—__—_—__..._________...__._._._..__—_——.—_—__..______—__..____.-_.__.._.___.._-____——_.

; INITALIZED VOICETABLE ‘
: A zero in the first field tells FULSYN that this is the last voice
; to be used!

TABSSTART: : ; DO NOT EDIT TEIS LABEL
de.1l -4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 0
dec.1 —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 1
dc.1l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 2
dec.1l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 3
de.l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 4
de.1l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 5
dc.l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 6
dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 7-LAST
de.1l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 8
dc.l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 9
dc.l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 10
dec.1l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 11
de.1l —4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ; voice 12
dec.l 0

© 1995 Atari Corp. Confidential Information “7PR Property of Atari Corporation 26 April, 1995

Libraries

strlow e::
-include “slopeenv\\string5.env" ; envelope used in patch 0

;**r

Fr* EDIT UP TO THIS POINT *ow

;***

; have slop for sloppy loader

.de.l1 0,0

TABSEND: : ; DO NOT EDIT THIS LABEL
.dc.l1 0
.end

; EOF

26 April, 1995 Confidential Information /PR Property of Atari Corporation © 1995 Atari Corp.

k. The Jaguar provides several options for game developers to store non-volatile game information such as
- high scores, options, saved games, music/sound effect levels, etc... while the unit is powered down.

Standard Jaguar Cartridge PCB’s are currently equipped with a 128 byte E2PROM for non-volatile
storage. Developer Alpine boards also contain a compatible part for use in game testing. These parts are
rated for approximately 100,000 write cycles before failure though we have achieved a much higher

number of successful writes in our testing.

In order to provide compatibilty with the parts we use in manufacturing, we supply tested code which
must be used to access the E2PROM. This code should not be modified in any manner unless prior
approval is granted by Atari Corp. The JAGUAR\SOURCE\EEPROM directory contains EEPROM.S,
which has six functions used for reading, writing, and performing checksums on this data. Use of these
functions requires that a valid stack pointer has been set in A7. These functions are as follows:

input 91w = EZ.PROM address to read from.

Register Usage Preserves all other registers.
Returns do.w = Value read
Purpose This function reads one 16-bit word (address #0-62) from the EZPROM. This function
pays no attention to the checksum and therefore has no way to be sure the data is
valid. A call to eeValidateChecksum will ensure that successive calls to
| eeReadWord will return valid data.

input 91w EZPROM address to write to.

dow Datato write.

| Register Usage Preserves all other registers.

Returns dow 0 — Successful.

1 — Wirite failed.

Purpose This function attempts to write one 16-bit word (address #0-62) to the E-PROM. This
function does not update the checksum and will thus cause any subsequent calls to
eeReadBank or eeValidateChecksum to fail. The function eeUpdateChecksum
must be used after any series of eeWriteWord calls to make the checksum valid

again.

Input 201 Address of a buffer 63 16.bit words in length to receive data from the
E’PROM.
Register Usage Preserves all other registers.

Returns dow O— Successful.
1 — Checksum invalid.

© 1995 Atari Corp. Confidential Information “7BR Property of Atari Corporation 26 April, 1995

Page 58

Libraries

Purpose

This function reads 63 16-bit words from the E°PROM into a supplied buffer and
validates the data against the stored checksum to ensure the data read is good.

Input a0.l Address of a buffer containing 63 16-bit words to write to the E“PROM.
Register Usage Preserves all other registers.
Returns do.w 0 - Successful.
1 — Wirite failed.
Purpose This functions stores 63 16-bit words supplied to it in the E°PROM, checksums the

data, and stores the checksum at address #63. We recommend that this function only
be used when a large amount of data needs to be stored since this counts as 64
writes against the 100,000 rated limit. If you only change a couple of words, use
eeWriteWord(s) followed by eeUpdateChecksum.

Input None.
Register Usage Preserves all other registers.
Returns do.w O — Successful.
1 — Checksum write failed.
Purpose This functions checksums the first 63 16-bit words from the E°PROM and stores the
checksum at address #63.

input None.
Register Usage Preserves all other registers.
Returns do.w 0 — Successful.
1 — Checksum invalid.
Purpose This function checksums the first 63 16-bit words from the E°PROM and compares
the checksum to the value stored at address #63. This function does not change any
stored data.

We are currently in the design phase of a new cartridge PCB which will contain a 16k E°’PROM. Third-
parties will be able to request this PCB to provide access to the greater amount of storage. Because this
project is still under development, no further details are available yet. Atari will notify developers when
this part becomes available.

Because CD-ROM titles do not normally have access to non-volatile storage, Atari will be making
available a Flash ROM cartridge as a consumer product that give end-users the option to save high
scores and game information. The protocols for accessing this cartridge are given in the NV-RAM
Cartridge Access Library section.

26 April, 1995

Confidential Information ‘PR Property of Atari Corporation

© 1995 Atari Corp.

Because CD-ROM titles do not normally have access to non-volatile storage, Atari will make available a
b special NV-RAM cartridge as a consumer product. This will give end-users the option to save high
- scores, setup options, and saved game information for their CD-ROM games. This cartridge is accessed

i by your program through the NV-RAM cartridge library.

These calls are provided to allow developers writing CD-ROM based games to save game information
into a special cartridge containing non-volatile Flash ROM memory in an efficient and easy to use
manner. There will be 128K bytes available in NV memory in the first version of the hardware (later
cartridges may include more or less memory, so developers should use the Inquire function to
determine the actual space available). This memory will be used and allocated in a file system-like
manner, so that multiple games may use the same non-volatile memory cartridge without conflict, and
so that different cartridge sizes may easily be supported. The NVM_Bios calls are thus much like the

GEMDOS or MS-DOS file system calls.

The length of each block of memory is some multiple of 512 bytes. Memory blocks must be given a
size when they are created, and cannot exceed that size later. The total number of memory blocks
depends on the size of the cartridge being used, but as long as you use the NVM_Bios calls you will be

’ able to deal with whatever is available.

A memory block is uniquely identified by two strings: the application which created it, and a block-
specific name (its "filename"). The application name is available so that users may quickly identify
which applications are associated with which blocks of memory. Application names may be up to 15
characters in length, and file names may be up to 9 characters in length. Both application and file
names must use only characters chosen from the following 40 character set:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789:".space

There are eleven calls provided to access NV memory. When the calls are available, a magic cookie
with the value ' NVM' (0xSF4E564D) will exist at address $2400, and a dispatcher will exist at $2404.
To invoke a function, do a 68000 JSR to location $2404 with the opcode and parameters described on

the following pages.

All of the functions return a 32 bit value in d0, although in many cases only the lower 16 bits will be of
interest. If bit 31 of dO is set (i.e. if d0.1 is negative) then an error has occured. The following error

codes are defined:

Error Name Code Description

ENOINIT -1 the Initialize function has not yet been called
ENOSPC -2 there is not enough free space for the operation
EFILNF -3 the file was not found

© 1995 Atari Corp. Confidential Information “7BR Property of Atari Corporation 26 April, 1995

Page 60 Libraries

O ame ode De ptio
EINVFN -4 an attempt was made to use an invalid function
ERANGE -5 an attempt was made to seek out of range
ENFILES -6 no more file handles are available
EIHNDL -7 invalid handle passed to function

The following functions are available:

Function Opcode
Initialize
Create
Open
Close
Delete
Read
Write
Search First
Search Next
Seek
inquire

Slolo|~jo|o]|slwim]|-|o

C Prototype int NVM_Bios(short opcode = 0, char *app_name, char *work_area)
68000 Assembly pea work_area
Example pea app_hame
move.w #0,-(sp)
jsr NVM_Bios
adda.l #10,sp
Returns 0
Purpose Infialize must be calied before any other NVM_Bios function. its purpose is to

initialize the NVM_Bios system, and also to identify the current application to the

i NVM Bios. The application name (a null terminated string satisfying the rules listed
. above) is passed as the parameter app_name. All subsequent Create and Open
operations will use this application name for the memory blocks being created or
opened. The second parameter (work_area) must point to a 16K, phrase aligned
buffer which the NVM Bios may use as a scratch buffer. Applications need not
preserve the contents of this memory between NVM_Bios calls (i.e. they can also
use it for other purposes when not using the NVM Bios) but they must be aware that
the buffer will be modified by all NVM_Bios calls. In other words, you can do what
you want with the 16K between NVM_Bios calls, but every time you call NVM_Bios
the 16K will be trashed.

It is legal to call Initialize more than once; indeed, this is the only way for applications
to open another application's memory blocks or for an application to change the
location of the 16K NVM_Bios buffer. Please note that calling Initialize will invalidate
all currently open handles (returned by Create or Open).

All other NVM_Blos functions will return ENOINIT if called before the first call to
2 Initialize.

26 April, 1995 Confidential Information “7LR. Property of Atari Corporation © 1995 Atari Corp.

' | C Prototype int N\VM_Bios(short opcode = 1, char *file_name, long file_size)
i | 68000 Assembly move.l file_size
Example pea file_name

movew #1,-(sp)

jsr NVM_Bios

adda.l #10,5p
A non-negative handle on success
ENOINIT if the Initialize function has not yet been called
ENOSPC if there is insufficient room to allocate the file .
Create should be used to allocate a specified number of bytes from backup memory.
The parameter file_name should point to a name for the memory block. If the current
application (specified by the Initialize call) already has a memory biock with the same.
name, then that block will be deleted and a new one created (i.e. the new block wil
replace the existing one). The file_size parameter should contain the size in bytes
required for the block. This size will be rounded up to the nearest muttiple of 256
before being used for allocation.

Note that multiple applications may have files with the same name, without affecting
one another; Create will only delete an existing file if both the file name AND the
applicaticn name match.

The file handle returned by Create must be used in any Read, Write, or Seek calls
referring to this file.

WARNING: do not make this call if there is an existing file handle (returned by a
previous Create or Open call) referringto a file with the same name as the new file
being created. Use the Close call to close all such file handles before re-creating the
file.

C Prototype int N\VM_Bios(short opcode = 2, char *file_name)

68000 Assembly pea file_name

Example movew #2,-(sp)

jst NVM_Bios

adda.l #6,sp

Returns A non-negative handle on success

EFILNF if the application has no file with the given name

Purpose Instructs the Bios to attempt to access the blocks of memory owned by the current
application (as setin Initialize) and whose file name is file_name. The file_name
parameter must point to a null terminated file name string of an existing file. As with
the Create call, Open will search only for files owned by the current application; it will
not open a file owned by a different application, even if the file names are the same.

The handle returned by Open must be used in any Read, Write, or Seek calls
referring to this file.

© 1995 Atari Corp. Confidential Information 7R Property of Atari Corporation 26 April, 1995

Page 62

Libraries

C Prototype int N\VM_Bios(short opcode = 3, short handle)
68000 Assembly move.w #handle,-(sp)
Example move.w #3,-(sp)
jsr NVM_Bios
adda.l #4,sp
Returns 0 on success
EIHNDL if passed an invalid handle
Purpose Used by an application to indicate that it is finished working with a file previously
opened by Open or Create. After the call to Close, the handle passed to close
becomes invalid, and no further Read or Write calls on that handie will succeed.

C Prototype int NVM_Bios(short opcode = 4, char *app_name, char *file_name)
68000 Assembly pea file_name
Example pea app_hame

move.w #4,-(sp)

isr NVM_Bios

adda.! #10,sp
Returns 0 on success

EFILNF if no file matching the given application name and file name is found

Purpose Deletes a file, freeing the memory associated with it. Any application may delete any

other application’s file, by passing in the application name and file name (as
determined by Search First and Search Next) in app_name and file_name

respectively.

Note that applications should never delete files belonging to other applications unless

specifically requested to do so by the user . If an application needs more space than

is available on the cartridge, then it should tell the user and offer him or her the choice
of either aborting the current operation or of selecting one or more files to delete from

the cartridge.

WARNING: do not make this call if there is an existing file handle (returned by a
previous Create or Open call) referring to the file being deleted. Use the Close call
to close all such file handles before deleting the file.

C Prototype long NVM_Bios(short opcode = 5, short handle, char * bufptr, long count)
68000 Assembly move.| count,-(sp)
Example pea bufptr

move.w handie,-(sp)

move.w #5,-(sp)

jsr NVM_Bios

adda.l #12,sp
Returns number of bytes read in d0, if successful

EIHNDL if passed an invalid handle

26 April, 1995

Confidential Information ‘AR Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 63

Purpose The Read call may be used to fill a buffer pointed to by bufptr with count number of
bytes from the file specified by handle (returned from a previous Open or Close call).
The read will begin at the current position in the file. This position is initialized to O by
Open or Create, is incremented by Read and Write (by the number of bytes read or
written, respectively), and may be changed by Seek. The game code must provide a
buffer large enough to hold count number of bytes. If successful, the call will return
the number of bytes read. At the end of the file (i.e. when the file's current position
exceeds its size) O bytes will be returned by Read.

C Prototype long NVM_Bios(short opcode = 6, short handle, char *bufptr, long count)

68000 Assembly move.| count,-{sp)

Example pea bufptr

move.w handle,-(sp)

move.w #6,-(sp)

jsr NVM_Bios

adda.l #12,sp

Returns number of bytes written in d0, if successful

EIHNDL if passed an invalid handle

Purpose The Write call may be used to write count number of bytes from the file specified by
handle (returned from a previous Open or Close call). The write will begin at the
current position in the file. This position is initialized to O by Open or Create, is

| incremented by Read and Write (by the number of bytes read or written,
respectively), and may be changed by Seek. The number of bytes actually written to
the file is returned. This may be less than count if, for example, an attempt is made
to write more bytes to the file than the space allocated for it in Create.

C Prototype int NVM_Bios(short opcode = 7, NV_FILEINFO *search_buf, long search_flag)
68000 Assembly move.| search_flag,-(sp)
Example pea search_buf
move.w #7,-(sp)
jsr NVM_Bios
adda.l #10,sp
0 on success
EFILNF if no files match the search

© 1995 Atari Corp. Confidential Information i, 2% Property of Atari Corporation 26 April, 1995

Page 64 Libraries

Purpose The Search First call can be used in conjunction with the Search Next call to browse
* through the backup memory table of contents. This can be useful for displaying to
the user all of the games whose information is backed up on a given cart. It can also
; be used by a game to obtain application and file names to be used in the Delete call

‘ to make room on a cartridge for its own information. The game player must be given
‘ final authority on this type of action.

The search_buf parameter should point to a word-aligned 30 byte buffer used as a
structure as shown below:

typedef struct
{
long size;
char app_name[16];
char file_name[10];
} NV_FILEINFO

If the search is successful, the size field will be filled in with a long word giving the
total size of the file. The app_name field will be filled with a nuil terminated character
string giving the name of the application that created this file. The file_name field will
be filled with a null terminated string consisting of the name the application gave to
the file. These two strings constitute the app_name and file_name parameters for the
Delete call.

The search_flag parameter must be either O or 1. if it is zero, then the search will
include all files on the cartridge, regardiess of which application created them. Ifitis
one, only files created by the current application (as specified by the last cali to

1 Initialize) will be included in the search. The value of search_flag will be used in

¥ subsequent Search Next calls as well.

C Prototype int NVM_Bios(short opcode = 8, NV_FILEINFO *search buf)
i 68000 Assembly pea search_buf
[Example move.w #8,-(sp)
i , jsr NVM_Bios
\ adda.l #6,5p
Returns identical to Search First
Purpose To be used in conjunction with Search First to provide the caller with table of
contents information. This call can be made successive times until EFILNF is
returned in d0. This will mean that no other entries exist in backup memory.
See the entry for Search First for the definition of the NV_FILEINFO structure.

| Prototype | long NVM_Bios(short opcode = 9, short handle, long offset, short ﬂag_;) |

26 April, 1995 Confidential Information “2PR Property of Atari Corporation © 1995 Atari Corp.

Libraries Page 65

68000 Assembly move.w flag,-(sp)
Example move.l offset,-(sp)
move.w handle,-(sp)
move.w #9,-(sp)

jsr NVM_Bios
adda.l #10,sp
Returns the new file position, if successful

EIHNDL if passed an invalid handle

ERANGE if the offset would be past the end of file

Purpose Resets the file position (used by Read and Write) for the file whose file handle (as
returned by Open or Create) is handie to be at offset bytes from the beginning of the
file (if flag is 0) or from the current position in the file (if flag is 1). Subsequent Read
or Write calls wili begin their operations at this point (and will update the file position
as usual).

Prototype int NVM Bios(short opcode = 10, long *totspc, long *freespc)
68000 Assembly pea freespc ; Ptr to ‘freespc’ variable somewhere in RAM
Example pea totspc ; Ptr to ‘totspc’ variable somewhere in RAM
move.w #10,-(sp)
bsr NVM_Bios
adda.l #10,sp
Returns 0 on success
Purpose Inquires about the amount of space available on the cartridge. The totspc parameter

points to a long word which is filled in with the total amount of cartridge memory which
may be used for applications (i.e. the size of the largest possible memory biock,
assuming it is the only memory block on the cartridge). The freespc parameter points
to a long word which is filled in with the amount of cartridge memory currently free
(i.e. the size of the largest memory block which could be created at the present time).
(Note that the amount of free memory is not the only constraint on the Create call;
even if there is sufficient space for a memory block, Create may return ENOSPC if
there is no room left in the cartridge's table of contents.)

The NV-RAM Simulator allows you to use an Alpine board plugged into your Jaguar CD-ROM
development station to simulate a NV-RAM cartridge during the development process. It provides the
same functions for accessing NV memory as described in the previous section.

The NV-RAM Simulator is normally located in the JAGUAR\NVRAMSIM directory. To use it, load
the debugger and then type:

load nvmsim.db

The NVRAM BIOS will be installed into your system and then control will return to the debugger. At
this point you may load and execute your main program.

© 1995 Atari Corp. Confidential Information . 2 ¥ Property of Atari Corporation 26 April, 1995

Page 66 Libraries

The Alpine board’s memory from $900000 to $91FFFF will be used to hold the cartridge data. A
sample disk image (full of files containing random data) is included with the simulator. The file is
called DISKIMG.IMG. To load this file, type "read diskimg.img 900000" while in the
debugger. The debugger script NVMTEST.DB is also included. It will load both the NV-RAM
simulator and the sample cartridge files in one easy step.

Keep in mind that the Alpine board’s memory switch must be set for “write enable” in order for the
simulator to work. Also keep in mind that any program or debugger script that clears DRAM below
$4000 will erase the simulator from memory.

If you hold down the "Option" key (and keep it held down) before typing the "load nvmsim.db" or
“load nvmtest.db” command in the debugger, you will be presented with the Save Cartridge
Manager screen. This is a sample application which users will also be able to access in order to delete
files. (Please note that the existence of the Save Cartridge Manager does not excuse individual
applications from providing similar functionality themselves!!!). The Save Cartridge Manager uses the
following keys:

up arrow/down arrow Selects files

AB,C To delete a file

OPTION To choose how to sort files
OPTION + 1 To save preferences in a file
OPTION +7+9 To create a (dummy) file
OPTION + * + # To erase all files

OPTION +*+0 + # To do a test of free memory
*+# To exit the manager

Once the Save Cartridge Manager has run, the BIOS will be copied to RAM (at $2400). You can then
reset the machine and load and run your own application. The BIOS will remain in RAM until the
* machine is powered off.

26 April, 1995 Confidential Information ™ Property of Atari Corporation © 1995 Atari Corp.

	Jaguar Libraries
	Jaguar Startup Code
	3D Graphics
	Jaguar BPEG Image Compression & Decompression
	Cinepak Video Decompression & Playback
	Networking
	Music & Sound
	Jaguar Music Driver
	Jaguar Sound Tool User Guide
	EEPROM Access Library
	NV-RAM Cartridge Access Library

